73 resultados para hybrid prediction method
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.
Resumo:
The machining of carbon fiber reinforced polymer (CFRP) composite presents a significant challenge to the industry, and a better understanding of machining mechanism is the essential fundament to enhance the machining quality. In this study, a new energy based analytical method was developed to predict the cutting forces in orthogonal machining of unidirectional CFRP with fiber orientations ranging from 0° to 75°. The subsurface damage in cutting was also considered. Thus, the total specific energy for cutting has been estimated along with the energy consumed for forming new surfaces, friction, fracture in chip formation and subsurface debonding. Experiments were conducted to verify the validity of the proposed model.
Resumo:
The hybrid test method is a relatively recently developed dynamic testing technique that uses numerical modelling combined with simultaneous physical testing. The concept of substructuring allows the critical or highly nonlinear part of the structure that is difficult to numerically model with accuracy to be physically tested whilst the remainder of the structure, that has a more predictable response, is numerically modelled. In this paper, a substructured soft-real time hybrid test is evaluated as an accurate means of performing seismic tests of complex structures. The structure analysed is a three-storey, two-by-one bay concentrically braced frame (CBF) steel structure subjected to seismic excitation. A ground storey braced frame substructure whose response is critical to the overall response of the structure is tested, whilst the remainder of the structure is numerically modelled. OpenSees is used for numerical modelling and OpenFresco is used for the communication between the test equipment and numerical model. A novel approach using OpenFresco to define the complex numerical substructure of an X-braced frame within a hybrid test is also presented. The results of the hybrid tests are compared to purely numerical models using OpenSees and a simulated test using a combination of OpenSees and OpenFresco. The comparative results indicate that the test method provides an accurate and cost effective procedure for performing
full scale seismic tests of complex structural systems.
Resumo:
Even though computational power used for structural analysis is ever increasing, there is still a fundamental need for testing in structural engineering, either for validation of complex numerical models or to assess material behaviour. In addition to analysis of structures using scale models, many structural engineers are aware to some extent of cyclic and shake-table test methods, but less so of ‘hybrid testing’. The latter is a combination of physical testing (e.g. hydraulic
actuators) and computational modelling (e.g. finite element modelling). Over the past 40 years, hybrid testing of engineering structures has developed from concept through to maturity to become a reliable and accurate dynamic testing technique. The hybrid test method provides users with some additional benefits that standard dynamic testing methods do not, and the method is more cost-effective in comparison to shake-table testing. This article aims to provide the reader with a basic understanding of the hybrid test method, including its contextual development and potential as a dynamic testing technique.
Resumo:
Even though computational power used for structural analysis is ever increasing, there is still a fundamental need for testing in structural engineering, either for validation of complex numerical models or material behaviour. Many structural engineers/researchers are aware of cyclic and shake table test methods, but less so hybrid testing. Over the past 40 years, hybrid testing of engineering structures has developed from concept through to maturity to become a reliable and accurate dynamic testing technique. In particular, the application of hybrid testing as a seismic testing technique in recent years has increased notably. The hybrid test method provides users with some additional benefits that standard dynamic testing methods do not, and the method is much more cost effective in comparison to shake table testing. This paper aims to provide the reader with a basic understanding of the hybrid test method and its potential as a dynamic testing technique.
Resumo:
An overview of research on the development of the hybrid test method is presented. The maturity of the hybrid test method is mapped in order to provide context to individual research in the overall development of the test method. In the pseudo dynamic (PsD) test method, the equations of motion are solved using a time stepping numerical integration technique with the inertia and damping being numerically modelled whilst restoring force is physically measured over an extended timescale. Developments in continuous PsD testing led to the real-time hybrid test method and geographically distributed hybrid tests. A key aspect to the efficiency of hybrid testing is the substructuring technique where the critical structural subassemblies that are fundamental to the overall response of the structure are physically tested whilst the remainder of the structure whose response can be more easily predicted is numerically modelled. Much of the early research focused on developing the accuracy and efficiency of the test method, whereas more recently the method has matured to a level where the test method is applied purely as a dynamic testing technique. Developments in numerical integration methods, substructuring, experimental error reduction, delay compensation and speed of testing have led to a test method now in use as full-scale real-time dynamic testing method that is reliable, accurate, efficient and cost effective.
Resumo:
A modified UNIFAC–VISCO group contribution method was developed for the correlation and prediction of viscosity of ionic liquids as a function of temperature at 0.1 MPa. In this original approach, cations and anions were regarded as peculiar molecular groups. The significance of this approach comes from the ability to calculate the viscosity of mixtures of ionic liquids as well as pure ionic liquids. Binary interaction parameters for selected cations and anions were determined by fitting the experimental viscosity data available in literature for selected ionic liquids. The temperature dependence on the viscosity of the cations and anions were fitted to a Vogel–Fulcher–Tamman behavior. Binary interaction parameters and VFT type fitting parameters were then used to determine the viscosity of pure and mixtures of ionic liquids with different combinations of cations and anions to ensure the validity of the prediction method. Consequently, the viscosities of binary ionic liquid mixtures were then calculated by using this prediction method. In this work, the viscosity data of pure ionic liquids and of binary mixtures of ionic liquids are successfully calculated from 293.15 K to 363.15 K at 0.1 MPa. All calculated viscosity data showed excellent agreement with experimental data with a relative absolute average deviation lower than 1.7%.
Resumo:
This paper presents the results of an experimental study (the ultimate load capacity of composite metal decking/concrete floor slabs. Full-scale in situ testing of composite floor slabs was carried out in the Building Research Establishment's Large Building Test Facility (LBTF) at Cardington. A parallel laboratory test programme, which compared the behaviour of composite floor slabs strips, also carried out at Queen's University Belfast (QUB). Articular attention was paid to the contribution of compressive membrane action to the load carrying capacity. The results of both test programmes were compared with predictions by yield line theory and a theoretical prediction method in which the amount of horizontal restraint mid be assessed. The full-scale tests clearly demon-wed the significant contribution of compressive membrane effects to the load capacity of interior floor panels with a lesser contribution to edge/corner panels.
Resumo:
In the investigation of real loading capacities in concrete bridge deck slabs,the study of this type of structure was carried out with consideration of compressive membrane action.A series of experimental test of steel-concrete bridge structures was developed with the analysis of influences from the varying of structural parameters on loading capacities,including reinforcement percentages,supporting beam sizes and concrete compressive strength.Through the study of the experimental results,it was found that the real structural loading capacities are larger than those predicted by current design methods.Therefore,based on the previous research,a prediction method for loading capacities of concrete bridge deck slabs was established with consideration of CMA,which was built based on the plastic ultimate analysis.In this method,the lateral restraint stiffness subjected by concrete bridge deck slabs was provided.The proposed theoretical model is capable of predicting the loading capacities of this type of structure accurately with comparison of results from several bridge deck experimental tests.
An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
Resumo:
Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
Resumo:
An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.