48 resultados para human-brain
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Microdialysis enables the chemistry of extracellular ?uid in body tissues to be measured. Extracellular proteases such as the cysteine protease, cathepsin S (CatS), are thought to facilitate astrocytoma invasion. Microdialysates obtained from human brain tumoursin vivo were subjected to cathepsin S activity and ELISA assays. Cathepsin S ELISA expression was detected in ?ve out of 10 tumour microdialysates, while activity was detected in ?ve out of 11 tumour microdialysates. Cathepsin S expression was also detected in microdialysate from the normal brain control although no activity was found in the same sample. While some re?nements to the technique are necessary, the authors demonstrate the feasibility and safety of microdialysis in human astrocytomasin vivo. Characterisation of the extracellular environment of brain tumoursin vivo using microdialysis may be a useful tool to identify the protease pro?le of brain tumours.
Resumo:
Purpose
– Information science has been conceptualized as a partly unreflexive response to developments in information and computer technology, and, most powerfully, as part of the gestalt of the computer. The computer was viewed as an historical accident in the original formulation of the gestalt. An alternative, and timely, approach to understanding, and then dissolving, the gestalt would be to address the motivating technology directly, fully recognizing it as a radical human construction. This paper aims to address the issues.
Design/methodology/approach
– The paper adopts a social epistemological perspective and is concerned with collective, rather than primarily individual, ways of knowing.
Findings
– Information technology tends to be received as objectively given, autonomously developing, and causing but not itself caused, by the language of discussions in information science. It has also been characterized as artificial, in the sense of unnatural, and sometimes as threatening. Attitudes to technology are implied, rather than explicit, and can appear weak when articulated, corresponding to collective repression.
Research limitations/implications
– Receiving technology as objectively given has an analogy with the Platonist view of mathematical propositions as discovered, in its exclusion of human activity, opening up the possibility of a comparable critique which insists on human agency.
Originality/value
– Apprehensions of information technology have been raised to consciousness, exposing their limitations.
Resumo:
A study combining high resolution mass spectrometry (liquid chromatography-quadrupole time-of-flight-mass spectrometry, UPLC-QTof-MS) and chemometrics for the analysis of post-mortem brain tissue from subjects with Alzheimer’s disease (AD) (n = 15) and healthy age-matched controls (n = 15) was undertaken. The huge potential of this metabolomics approach for distinguishing AD cases is underlined by the correct prediction of disease status in 94–97% of cases. Predictive power was confirmed in a blind test set of 60 samples, reaching 100% diagnostic accuracy. The approach also indicated compounds significantly altered in concentration following the onset of human AD. Using orthogonal partial least-squares discriminant analysis (OPLS-DA), a multivariate model was created for both modes of acquisition explaining the maximum amount of variation between sample groups (Positive Mode-R2 = 97%; Q2 = 93%; root mean squared error of validation (RMSEV) = 13%; Negative Mode-R2 = 99%; Q2 = 92%; RMSEV = 15%). In brain extracts, 1264 and 1457 ions of interest were detected for the different modes of acquisition (positive and negative, respectively). Incorporation of gender into the model increased predictive accuracy and decreased RMSEV values. High resolution UPLC-QTof-MS has not previously been employed to biochemically profile post-mortem brain tissue, and the novel methods described and validated herein prove its potential for making new discoveries related to the etiology, pathophysiology, and treatment of degenerative brain disorders.
Resumo:
Alzheimer’s disease (AD) is associated with significant disturbances in the homeostasis of Na+ and K+ ions as well as reduced levels of Na+/K+ ATPase in the brain. This study used ICP-MS to accurately quantify Na+ and K+ concentrations in human postmortem brain tissue. We analyzed parietal cortex (Brodmann area 7) from 28 cognitively normal age-matched controls, 15 cases of moderate AD, 30 severe AD, and 15 dementia with Lewy bodies (DLB). Associations were investigated between [Na+] and [K+] and a number of variables including diagnosis, age, gender, Braak tangle stage, amyloid-β (Aβ) plaque load, tau load, frontal tissue pH, and APOE genotype. Brains from patients with severe AD had significantly higher (26%; p<0.001) [Na+] (mean 65.43 ± standard error 2.91 mmol/kg) than controls, but the concentration was not significantly altered in moderate AD or DLB. [Na+] correlated positively with Braak stage (r=0.45; p<0.0001), indicating association with disease severity. [K+] in tissue was 10% lower (p<0.05) in moderate AD than controls. However, [K+] in severe AD and DLB (40.97±1.31 mmol/kg) was not significantly different from controls. There was a significant positive correlation between [K+] and Aβ plaque load (r=0.46; p=0.035), and frontal tissue pH (r=0.35; p=0.008). [Na+] was not associated with [K+] across the groups, and neither ion was associated with tau load or APOE genotype. We have demonstrated disturbances of both [Na+] and [K+] in relation to the severity of AD and markers of AD pathology, although it is possible that these relate to late-stage secondary manifestations of the disease pathology.
Resumo:
Huntington’s disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using 1H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (P<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (P<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and L-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (P=0.02-0.03). They also included L-leucine which was reduced 1.54-1.69-fold (P=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (P<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first 1H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted.
Resumo:
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.