11 resultados para human longevity
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Several studies have assessed changes in frequency of -174 interleukin (IL)-6 single nucleotide polymorphism (SNP) with age. If IL-6 tracks with disability and age-related diseases, then there should be reduction, in the oldest old, of the frequency of homozgyous GG subjects, who produce higher IL-6 levels. However, discordant results have been obtained. To explore the relationship between this polymorphism and longevity, we analyzed individual data on long-living subjects and controls from eight case-control studies conducted in Europeans, using meta-analysis. There was no significant difference in the IL-6 genotype between the oldest old and controls (Odds Ratio [OR]=0.96; 95% C.I.: 0.77-1.20; p=0.71), but there was significant between-study heterogeneity (I(2)=55.5%). In a subgroup analyses when male centenarians from the three Italian studies were included, the frequency of the IL-6 -174 GG genotype was significantly lower than the other genotypes (OR=0.49; 95% C.I.: 0.31-0.80; p=0.004), with no evidence of heterogeneity (I(2)=0%). Our data supports a negative association between the GG genotype of IL-6 SNP and longevity in Italian centenarians, with males who carry the genotype being two times less likely to reach extreme old age compared with subjects carrying CC or CG genotypes. These findings were not replicated in other European groups suggesting a possible interaction between genetics, sex and environment in reaching longevity.
Resumo:
Paraoxonase 1 (PON1) has been suggested as a plausible candidate gene for human longevity due to its modulation of cardiovascular disease risk, by preventing oxidation of atherogenic low-density lipoprotein. The role of the PON1 192 Q/R polymorphism has been analyzed for association with survival at old age in several populations, albeit with controversial results. To reconcile the conflicting evidence, we performed a large association study with two samples of 2357 Germans and 1025 French, respectively. We combined our results with those from seven previous studies in the largest and most comprehensive meta-analysis on PON1 192 Q/R and longevity to-date, to include a total of 9580 individuals. No significant association of PON1 192 Q/R with longevity was observed, for either R allele or carriership. This finding relied on very large sample sizes, is supported by different analysis methods and is therefore considered very robust. Moreover, we have investigated a potential interaction of PON1 192 Q/R with APOE epsilon4 using data from four populations. Whereas a significant result was found in the German sample, this could not be confirmed in the other examined groups. Our large-scale meta-analysis provided no evidence that the PON1 192 Q/R polymorphism is associated with longevity, but this does not exclude the possibility of population-specific effects due to the influence of, and interaction between, different genetic and/or environmental factors (e.g. diet).
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
Several studies have assessed changes in frequency of -174 interleukin (IL)-6 single nucleotide polymorphism (SNP) with age. If IL-6 tracks with disability and age-related diseases, then there should be reduction, in the oldest old, of the frequency of homozygous GG subjects, who produce higher IL-6 levels. However, discordant results have been obtained. To explore the relationship between this polymorphism and longevity, we analyzed individual data on long-living subjects and controls from eight case-control studies conducted in Europeans, using meta-analysis. There was no significant difference in the IL-6 genotype between the oldest old and controls (Odds Ratio [OR]=0.96; 95% C.I.: 0.77-1.20; p=0.71), but there was significant between-study heterogeneity (I2=55.5%). In a subgroup analyses when male centenarians from the three Italian studies were included, the frequency of the IL-6 -174 GG genotype was significantly lower than the other genotypes (OR=0.49; 95% C.I.: 0.31-0.80; p=0.004), with no evidence of heterogeneity (I2=0%). Our data supports a negative association between the GG genotype of IL-6 SNP and longevity in Italian centenarians, with males who carry the genotype being two times less likely to reach extreme old age compared with subjects carrying CC or CG genotypes. These findings were not replicated in other European groups suggesting a possible interaction between genetics, sex and environment in reaching longevity.
Resumo:
To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes
Resumo:
The genetic contribution to the variation in human lifespan is approximately 25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥ 85 years) and 16121 younger controls (< 65 years) followed by replication in an additional set of 13060 long-lived individuals and 61156 controls. In addition, we performed a subset analysis in cases ≥ 90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P =1.74 x 10-8). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 x 10-36), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34103) the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.
Resumo:
Variation in the apolipoprotein E gene (APOE) has been reported to be associated with longevity in humans. The authors assessed the allelic distribution of APOE isoforms e2, e3, and e4 among 10,623 participants from 15 case-control and cohort studies of age-related macular degeneration (AMD) in populations of European ancestry (study dates ranged from 1990 to 2009). The authors included only the 10,623 control subjects from these studies who were classified as having no evidence of AMD, since variation within the APOE gene has previously been associated with AMD. In an analysis stratified by study center, gender, and smoking status, there was a decreasing frequency of the APOE e4 isoform with increasing age (?2 for trend = 14.9 (1 df); P = 0.0001), with a concomitant increase in the e3 isoform (?2 for trend = 11.3 (1 df); P = 0.001). The association with age was strongest in e4 homozygotes; the frequency of e4 homozygosity decreased from 2.7% for participants aged 60 years or less to 0.8% for those over age 85 years, while the proportion of participants with the e3/e4 genotype decreased from 26.8% to 17.5% across the same age range. Gender had no significant effect on the isoform frequencies. This study provides strong support for an association of the APOE gene with human longevity.
Resumo:
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50 % of the variability in human lifespan with another 25 % explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Resumo:
To study whether individual Human Leucocyte Antigens (HLA) at the HLA 1 or 11 loci or the phenotypic combination A1B8Cw7DR3 were associated with longevity.