73 resultados para high density polyethylene

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and properties of melt mixed high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thick-ness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt-mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites with 1–10 wt% MWCNTs were prepared by twin screw extrusion and compression moulded into sheet form. The compression moulded nanocomposites exhibit a 112% increase in modulus at a MWCNT loading of 4 wt%, and a low electrical percolation threshold of 1.9 wt%. Subsequently, uniaxial, sequential (seq-) biaxial and simultaneous (sim-) biaxial stretching of the virgin HDPE and nanocomposite sheets was conducted at different strain rates and stretching temperatures to investigate the processability of HDPE with the addition of nanotubes and the influence of deformation on the structure and final properties of nanocomposites. The results show that the processability of HDPE is improved under all the uniaxial and biaxial deformation conditions due to a strengthened strain hardening behaviour with the addition of MWCNTs. Extensional deformation is observed to disentangle nanotube agglomerates and the disentanglement degree is shown to depend on the stretching mode, strain rate and stretching temperatures applied. The disentanglement effectiveness is: uniaxial stretching < sim-biaxial stretching < seq-biaxial stretching, under the same deformation parameters. In sim-biaxial stretching, reducing the strain rate and stretching temperature can lead to more nanotube agglomerate breakup. Enhanced nanotube agglomerate disentanglement exhibits a positive effect on the mechanical properties and a negative effect on the electrical properties of the deformed nanocomposites. The ultimate stress of the composite containing 4 wt% MWCNTs increased by ∼492% after seq-biaxial stretching, while the resistivity increased by ∼1012 Ω cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites of Linear Low Density Polyethylene (LLDPE) and Graphene Nanoplatelets (GNPs) were processed using a twin screw extruder under different extrusion conditions. The effects of screw speed, feeder speed and GNP content on the electrical, thermal and mechanical properties of composites were investigated. The inclusion of GNPs in the matrix improved the thermal stability and conductivity by 2.7% and 43%, respectively. The electrical conductivity improved from 10−11 to 10−5 S/m at 150 rpm due to the high thermal stability of the GNPs and the formation of phonon and charge carrier networks in the polymer matrix. Higher extruder speeds result in a better distribution of the GNPs in the matrix and a significant increase in thermal stability and thermal conductivity. However, this effect is not significant for the electrical conductivity and tensile strength. The addition of GNPs increased the viscosity of the polymer, which will lead to higher processing power requirements. Increasing the extruder speed led to a reduction in viscosity, which is due to thermal degradation and/or chain scission. Thus, while high speeds result in better dispersions, the speed needs to be optimized to prevent detrimental impacts on the properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a ZieglerNatta catalyzed foam and that foam density Is by far the most Influential factor over mechanical properties of foam. © 2004 Society of Plastics Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In order to isolate the â??bestâ?? sperm for assisted conception a discontinuous two-step density gradient centrifugation is usually employed. This technique is known to isolate a subpopulation with good motility, morphology and nuclear DNA (nDNA) integrity. As yet its ability to isolate sperm with unfragmented mitochondrial DNA (mtDNA) is unknown. Methods: Semen was obtained from men (n=28) attending our Regional Fertility Centre for infertility investigations. We employed a modified long polymerase chain reaction to study mtDNA and a modified alkaline Comet assay to determine nDNA fragmentation. Results: The high- density fraction displayed significantly more wild type mtDNA (75% of samples) than that of the low- density fraction (25% of samples). In the high-density fraction, there was a higher incidence of single, rather than double or multiple deletions and the deletions were predominantly small scale (0.1-4.0kb). There was a strong correlation between nDNA fragmentation, the number of mtDNA deletions (r=0.7, p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have suggested that men with raised plasma triglycerides (TGs) in combination with adverse levels of other lipids may be at special risk of subsequent ischemic heart disease (IHD). We examined the independent and combined effects of plasma lipids at 10 years of follow-up. We measured fasting TGs, total cholesterol (TC), and high density lipoprotein cholesterol (HDLC) in 4362 men (aged 45 to 63 years) from 2 study populations and reexamined them at intervals during a 10-year follow-up. Major IHD events (death from IHD, clinical myocardial infarction, or ECG-defined myocardial infarction) were recorded. Five hundred thirty-three major IHD events occurred. All 3 lipids were strongly and independently predictive of IHD after 10 years of follow-up. Subjects were then divided into 27 groups (ie, 33) by the tertiles of TGs, TC, and HDLC. The number of events observed in each group was compared with that predicted by a logistic regression model, which included terms for the 3 lipids (without interactions) and potential confounding variables. The incidence of IHD was 22.6% in the group with the lipid risk factor combination with the highest expected risk (high TGs, high TC, and low HDLC) and 4.7% in the group with the lowest expected risk (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas putida KT2440 is the only fully sequenced P. putida strain. Thus, for transcriptomics and proteomics studies with other P. putida strains, the P. putida KT2440 genomic database serves as standard reference. The utility of KT2440 whole-genome, high-density oligonucleotide microarrays for transcriptomics studies of other Pseudomonas strains was investigated. To this end, microarray hybridizations were performed with genomic DNAs of subcultures of P. putida KT2440 (DSM6125), the type strain (DSM291(T)), plasmid pWW0-containing KT2440-derivative strain mt-2 (DSM3931), the solvent-tolerant P. putida S12, and several other Pseudomonas strains. Depending on the strain tested, 22 to 99% of all genetic elements were identified in the genomic DNAs. The efficacy of these microarrays to study cellular function was determined for all strains included in the study. The vast majority of DSM6125 genes encoding proteins of primary metabolism and genes involved in the catabolism of aromatic compounds were identified in the genomic DNA of strain S12: a prerequisite for reliable transcriptomics analyses. The genomotypic comparisons between Pseudomonas strains were used to construct highly discriminative phylogenetic relationships. DSM6125 and DSM3931 were indistinguishable and clustered together with strain S12 in a separate group, distinct from DSM291(T). Pseudomonas monteilii (DSM14164) clustered well with P. putida strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of a direct current, low-pressure, and high-density reflex discharge plasma source operating in argon and in nitrogen, over a range of pressures 1.0-10(-2) mbar, discharge currents 20-200 mA, and magnetic fields 0-120 G, and its parametric characterization is presented. Both external parameters, such as the breakdown potential and the discharge voltage-current characteristic, and internal parameters, like the charge carrier's temperature and density, plasma potential, floating potential, and electron energy distribution function, were measured. The electron energy distribution functions are bi-Maxwellian, but some structure is observed in these functions in nitrogen plasmas. There is experimental evidence for the existence of three groups of electrons within this reflex discharge plasma. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the density of the cold group of electrons is as high as 10(18) m(-3), and the temperature is as low as a few tenths of an electron volt. The bulk plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of electric field. (C) 2002 American Institute of Physics.