262 resultados para heart ventricle isometric contraction

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold sensing role in sensory neurons, it is expressed and functional in several non-neuronal tissues, including vasculature. We previously demonstrated that menthol causes vasoconstriction and vasodilatation in isolated arteries, depending on vascular tone. Here we investigated calcium's role in responses mediated by TRPM8 ligands in rat tail artery myocytes using patch-clamp electrophysiology and ratiometric Ca2+ recording. Isometric contraction studies examined actions of TRPM8 ligands in the presence/absence of L-type calcium channel blocker. Menthol (300 μM), a concentration typically used to induce TRPM8 currents, strongly inhibited L-type voltage-dependent Ca2+ current (L-ICa) in myocytes, especially it's sustained component, most relevant for depolarisation-induced vasoconstriction. In contraction studies, with nifedipine present (10 μM) to abolish L-ICa contribution to phenylephrine (PE)-induced vasoconstrictions of vascular rings, a marked increase in tone was observed with menthol. Menthol-induced increases in PE-induced vasoconstrictions were mediated predominantly by Ca2+-release from sarcoplasmic reticulum, since they were significantly inhibited by cyclopiazonic acid. Pre-incubation of vascular rings with a TRPM8 antagonist strongly inhibited menthol-induced increases in PE-induced vasoconstrictions, thus confirming specific role of TRPM8. Finally, two other common TRPM8 agonists, WS-12 and icilin, inhibited L-ICa. Thus, TRPM8 channels are functionally active in rat tail artery myocytes and play a distinct direct stimulatory role in control of vascular tone. However, indirect effects of TRPM8 agonists, which are unrelated to TRPM8, are mediated by inhibition of L-type Ca2+ channels, and largely obscure TRPM8-mediated vasoconstriction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study is to assess the murine heart of normal embryos, neonates, and juveniles using high-frequency ultrasound. Methods: Diastolic function was measured with E/A ratio (E wave velocity/A wave velocity) and isovolumetric relaxation time (IRT), systolic function with isovolumetric contraction time (ICT), percentage fractional shortening (FS%), percentage ejection fraction (EF%). Global cardiac performance was quantified using myocardial performance index (MPI). Results: Isovolumetric relaxation time remained stable from E10.5 to 3 weeks. Systolic function (ICT) improved with gestation and remained stable from E18.5 onward. Myocardial performance index showed improvement in embryonic lift (0.82-0.63) and then stabilized from 1 to 3 week (0.60-0.58). Percentage ejection fraction remained high during gestation (77%-69%) and then decreased from the neonate to juvenile (68%-51%). Conclusion: The ultrasound biomicroscope allows for noninvasive in-depth assessment of cardiac function of embryos and pups. Detailed physiological and functional cardiac function readouts can be obtained, which is invaluable for comparison to mouse models of disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.

Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.

Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background A previous review suggested that the MacNew Quality of Life Questionnaire was the most appropriate disease-specific measure of health-related quality of life among people with ischaemic heart disease. However, there is ambiguity about the allocation of items to the three factors underlying the MacNew and the factor structure has not been confirmed previously among the people in the UK. Methods The MacNew Questionnaire and the SF-36 were administered to 117 newly admitted patients to a tertiary referral centre in Northern Ireland. All patients had been diagnosed with ischaemic heart disease. Results A confirmatory factor analysis was conducted on the factor structure of the MacNew and the model was found to be an inadequate fit of the data. A quantitative and qualitative analysis of the items suggested that a five factor solution was more appropriate and this was validated by confirmatory factor analysis. This new structure also displayed strong evidence of concurrent validity when compared to the SF-36. Conclusion We recommend that researchers should submit scores obtained from items on the MacNew to secondary analyses after being grouped according to the factor structure proposed in this paper, in order to explore further the most appropriate grouping of items.