7 resultados para gingivitis
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Aim: To characterize and map temporal changes in the biological and clinical phenotype during a 21-day experimental gingivitis study. Materials and Methods: Experimental gingivitis was induced over 21 days in healthy human volunteers (n = 56), after which normal brushing was resumed (resolution phase). Gingival and plaque indices were assessed. Gingival crevicular fluid was collected from four paired test and contra-lateral control sites in each volunteer during induction (Days 0, 7, 14 and 21) and resolution (Days 28 and 42) of experimental gingivitis. Fluid volumes were measured and a single analyte was quantified from each site-specific, 30s sample. Data were evaluated by analysis of repeated measurements and paired sample tests. Results: Clinical indices and gingival crevicular fluid volumes at test sites increased from Day 0, peaking at Day 21 (test/control differences all p
Resumo:
In this study, the physicochemical properties and preliminary in vivo clinical performance of formulations containing hydroxyethylcellulose (HEC; 3, 5, 10% w/w, poly(vinylpyrrolidone) (PVP; 3, 5% w/w), polycarbophil (PC; 1, 3, 5% w/w), and flurbiprofen (5% w/w) were examined. Flurbiprofen release into PBS pH 7.4 was performed at 37 degrees C. The mechanical properties (hardness, compressibility, adhesiveness, initial stress) and syringeability of formulations were determined using a texture analyzer in texture profile analysis (TPA) and compression modes, respectively. In general, the time required for release of 10 and 30% of the original mass of flurbiprofen (t(10%), t(30%)) increased as the concentration of each polymeric component increased. However, in the presence of either 5 or 10% HEC and 5% PC, increased PVP concentration decreased both t(10%), t(30%) due to excessive swelling land disintegration) of these formulations. Increased concentrations of HEC, PVP, and PC significantly increased formulation hardness, compressibility, work of syringe expression, and initial stress due to the effects of these polymers on formulation viscoelasticity. Similarly, increased concentrations of PC (primarily), HEC, and PVP increased formulation adhesiveness-due to the known bioadhesive properties of these polymers. Clinical efficacies of formulations containing 3% HEC, 3% PVP, 3% PC, and either 0% (control) of 5% (test) flurbiprofen, selected to offer optimal drug release and mechanical properties, were evaluated and clinically compared in an experimental gingivitis model. The test (flurbiprofen-containing) formulation significantly reduced gingival inflammation, as evaluated using the gingival index, and the gingival crevicular fluid volume, whereas, these clinical parameters were generally increased in volunteers who had received the control formulation. There were no observed differences in the plaque indices of the two subject groups, confirming that the observed differences in gingival inflammation could not be accredited to differences in plaque accummulation. This study has shown both the applicability of the in vitro methods used, particularly TPA, for the rational selection of formulations for clinical evaluation and, additionally, the clinical benefits of the topical application of a bioadhesive semisolid flurbiprofen-containing formulation for the treatment of experimental gingivitis.
Resumo:
Objectives: To investigate changes in the levels of the neuropeptides substance P (SP)and vasoactive intestinal peptide (VIP) in gingival crevicular fluid (GCF) during the development of gingival inflammation. Methods: Ten female volunteers completed an experimental gingivitis study. Clinical indices were recorded during an 18-day period of plaque accumulation after a further 10 days following the restoration of normal oral hygiene. 30-second GCF samples were taken periodically from two test and two control sites per subject using periopaper and stored at -70C prior to analysis. Radioimmunoassay was used to quantify SP- and VIP-like immunoreactivity (SP-LI, VIP-LI). Results: Gingival inflammation developed at test sites with increases in the plaque index, gingival index and bleeding on probing. Gingival health was restored following resumption of normal oral hygiene measures. At control sites SP-LI and VIP-LI remained low throughout the study period. At experimental gingivitis sites the mean amounts of SP-LI/30s rose from 3.9pg on day 0 to 37.7 pg, 64.9 pg and 61.8 pg by days 7, 14 and 18, before falling to 5.6 pg on day 28. Mean amounts of VIP-LI/30s rose from 102.8pg on day 2 to 727.6 pg and 853.5 pg on days 11 and 16, before falling to 371.4 pg by day 28. VIP was present in higher levels than SP in the GCF from both healthy and inflamed sites. SP levels rose more rapidly than VIP. Conclusions: There was a significant increase in SP and VIP in GCF paralleling the development of gingival inflammation.
Resumo:
Objective: To evaluate temporal changes in GCF levels of substance P, cathepsin G, interleukin 1 beta (IL-1&beta), neutrophil elastase and alpha1-antitrypsin (&alpha1AT) during development of and recovery from experimental gingivitis. Methods: Healthy human volunteers participated in a split-mouth study: experimental gingivitis was induced using a soft vinyl splint to cover test teeth during brushing over 21 days, after which normal brushing was resumed. Modified gingival index (MGI), gingival bleeding index (BI) and modified Quigley and Hein plaque index (PI) were assessed and 30-second GCF samples taken from 4 paired test and contra-lateral control sites in each subject at days 0, 7, 14, 21, 28 and 42. GCF volume was measured and site-specific quantification of one analyte per GCF sample was performed using radioimmunoassay (substance P), enzyme assay (cathepsin G) or ELISA (IL-1&beta, elastase, &alpha1AT). Site-specific data were analysed using analysis of repeated measurements and paired sample tests. Results: 56 subjects completed the study. All measurements at baseline (day 0) and at control sites throughout the study were low. Clinical indices and GCF volumes at the test sites increased from day 0, peaking at day 21 (difference between test and control for PI, BI, MGI and GCF all p<0.0001) and decreased again to control levels by day 28. Levels of four inflammatory markers showed a similar pattern, with significant differences between test and control apparent at 7 days (substance P p=0.0015; cathepsin G p=0.029; IL-1&beta p=0.026; elastase p=0.0129) and peaking at day 21 (substance P p=0.0023; cathepsin G, IL-1&beta and elastase all p<0.0001). Levels of &alpha1AT showed no apparent pattern over the course of the study. Conclusion: GCF levels of substance P, cathepsin G, IL-1&beta and neutrophil elastase have the potential to act as early markers of experimentally-induced gingival inflammation.
Resumo:
BACKGROUND:
The protein components of GCF can be separated by reverse-phase microbore HPLC on a C18 column with detection on the basis of 214 nm absorbance. A single major symmetrical protein peak eluting with a retention time of 26 min (50% acetonitrile) was evident in gingival crevicular fluid (GCF) from periodontitis patients but not in healthy GCF. This protein was identified as human MRP-8 by N-terminal amino acid sequencing and liquid chromatography quadropole mass spectrometry.
AIMS:
To quantify the amount of MRP-8 detectable in GCF from individual healthy, gingivitis and periodontitis affected sites and to study the relationship, if any, between the levels of this responsive protein and periodontal health and disease.
METHODS:
GCF was sampled (30 s) from healthy, gingivitis, and periodontitis sites in peridontitis subjects (n=15) and from controls (n=5) with clinically healthy gingiva and no periodontitis. Purified MRP-8 was sequenced by Edmann degradation and the phenylthiohydantoin (PTH) amino acid yield determined (by comparison of peak area with external PTH amino acid standards). This value was subsequently used to calculate the relative amount of protein in the peak eluting with a retention time of 26.0 min (MRP-8) in individual GCF chromatograms.
RESULTS:
Higher levels of MRP-8 were detected in inflammatory sites: periodontitis 457.0 (281.0) ng; gingivitis 413.5 (394.5) ng compared with periodontally healthy sites in diseased subjects 14.6 (14.3) ng and in controls 18.6 (18.5) ng, p=0.003. There was at least 20-fold more MRP-8 in the inflammatory compared with the healthy sites studied.
CONCLUSIONS:
The preliminary data indicate that MRP-8 is present in GCF, with significantly greater amounts present at diseased than healthy sites. A systematic study of the relationship of this protein to periodontal disease could prove useful in further clarifying whether MRP-8 could be a reliable GCF biomarker of gingivitis and periodontitis.
Resumo:
Chaperones are ubiquitous conserved proteins critical in stabilization of new proteins, repair/removal of defective proteins and immunodominant antigens in innate and adaptive immunity. Periodontal disease is a chronic inflammatory infection associated with infection by Porphyromonas gingivalis that culminates in the destruction of the supporting structures of the teeth. We previously reported studies of serum antibodies reactive with the human chaperone Hsp90 in gingivitis, a reversible form of gingival disease confined to the oral soft tissues. In those studies, antibodies were at their highest levels in subjects with the best oral health. We hypothesized that antibodies to the HSP90 homologue of P. gingivalis (HtpG) might be associated with protection/resistance against destructive periodontitis.