5 resultados para free energies

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Densities ([rho]) and viscosities ([eta]) of binary mixtures containing the Protic Ionic Liquid (PIL), pyrrolidinium octanoate with five molecular solvents: water, methanol, ethanol, n-butanol, and acetonitrile are determined at the atmospheric pressure as a function of the temperature and within the whole composition range. The refractive index of all mixtures (nD) is measured at 298.15†K. The excess molar volumes VE and deviation from additivity rules of viscosities [eta]E and refractive index [Delta][phi]n, of pyrrolidinium octanoate solutions were then deduced from the experimental results as well as apparent molar volumes V[phi]i, partial molar volumes and thermal expansion coefficients [alpha]p. The excess molar volumes VE are negative over the entire mole fraction range for mixture with water, acetonitrile, and methanol indicating strong hydrogen-bonding interaction for the entire mole fraction. In the case of longest carbon chain alcohols (such as ethanol and n-butanol)†+†pyrrolidinium octanoate solutions, the VE variation as a function of the composition describes an S shape. The deviation from additivity rules of viscosities is negative over the entire composition range for the acetonitrile, methanol, ethanol, and butanol, and becomes less negative with increasing temperature. Whereas, [eta]E of the {[Pyrr][C7CO2]†+†water} binary mixtures is positive in the whole mole fraction range and decreases with increasing temperature. the excess Gibbs free energies of activation of viscous flow ([Delta]G*E) for these systems were calculated. The deviation from additivity rules of refractive index [Delta][phi]n are positive over the whole composition range and approach a maximum of 0.25 in PIL mole fraction for all systems. The magnitude of deviation for [Delta][phi]n describes the following order: water†>†methanol†>†acetonitrile†>†ethanol. Results have been discussed in terms of molecular interactions and molecular structures in these binary mixtures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.