74 resultados para fractional Laplacian
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Background The use of portable fractional exhaled nitric oxide (FENO) devices is increasingly common in the diagnosis and management of allergic airways inflammation. Methods We tested two handheld FENO devices, to determine (a) if there was adequate intradevice repeatability to allow the use of single breath testing, and (b) if the devices could be used interchangeably. In a mixed pediatric population, including normal, asthmatic, and children with peanut allergies, 858 paired values were collected from the NIOX-MINO® and/or the NObreath® devices. Results The NIOX-MINO® showed excellent repeatability (mean difference of 0.1 with 95% limits of agreement between -7.93 to 7.72?ppb), while the NObreath® showed good repeatability (mean difference of -1.61 with 95% limits of agreement between -14.1 and 10.8?ppb). Intradevice repeatability was good but not adequate and the NIOX-MINO® systematically produced higher results than the NObreath® [mean difference of 7.8?ppb with 95% limits of agreement from -11.55 to 27.52?ppb (-33% to 290%)]. Conclusions Our results support the manufacturer's advice that single breath testing is appropriate for the NIOX-MINO®. NObreath® results indicate that the mean of more than one breath should be utilized. The devices cannot be used interchangeably. Pediatr Pulmonol. © 2011 Wiley Periodicals, Inc.
Resumo:
A novel non-linear dimensionality reduction method, called Temporal Laplacian Eigenmaps, is introduced to process efficiently time series data. In this embedded-based approach, temporal information is intrinsic to the objective function, which produces description of low dimensional spaces with time coherence between data points. Since the proposed scheme also includes bidirectional mapping between data and embedded spaces and automatic tuning of key parameters, it offers the same benefits as mapping-based approaches. Experiments on a couple of computer vision applications demonstrate the superiority of the new approach to other dimensionality reduction method in term of accuracy. Moreover, its lower computational cost and generalisation abilities suggest it is scalable to larger datasets. © 2010 IEEE.
Resumo:
Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.
Resumo:
Rationale: Nonadherence to inhaled corticosteroid therapy (ICS) is a major contributor to poor control in difficult asthma, yet it is challenging to ascertain. Objectives: Identify a test for nonadherence using fractional exhaled nitric oxide (FENO) suppression after directly observed inhaled corticosteroid (DOICS) treatment. Methods: Difficult asthma patients with an elevated FENO (>45 ppb) were recruited as adherent (ICS prescription filling >80%) or nonadherent (filling <50%). They received 7 days of DOICS (budesonide 1,600 µg) and a test for nonadherence based on changes in FENO was developed. Using this test, clinic patients were prospectively classified as adherent or nonadherent and this was then validated against prescription filling records, prednisolone assay, and concordance interview. Measurements and Main Results: After 7 days of DOICS nonadherent (n = 9) compared with adherent subjects (n = 13) had a greater reduction in FENO to 47 ± 21% versus 79 ± 26% of baseline measurement (P = 0.003), which was also evident after 5 days (P = 0.02) and a FENO test for nonadherence (area under the curve = 0.86; 95% confidence interval, 0.68-1.00) was defined. Prospective validation in 40 subjects found the test identified 13 as nonadherent; eight confirmed nonadherence during interview (three of whom had excellent prescription filling but did not take medication), five denied nonadherence, two had poor inhaler technique (unintentional nonadherence), and one also denied nonadherence to prednisolone despite nonadherent blood level. Twenty-seven participants were adherent on testing, which was confirmed in 21. Five admitted poor ICS adherence but of these, four were adherent with oral steroids and one with omalizumab. Conclusions: FENO suppression after DOICS provides an objective test to distinguish adherent from nonadherent patients with difficult asthma. Clinical trial registered with www.clinicaltrials.gov (NCT 01219036). Copyright © 2012 by the American Thoracic Society.
Resumo:
This paper presents generalized Laplacian eigenmaps, a novel dimensionality reduction approach designed to address stylistic variations in time series. It generates compact and coherent continuous spaces whose geometry is data-driven. This paper also introduces graph-based particle filter, a novel methodology conceived for efficient tracking in low dimensional space derived from a spectral dimensionality reduction method. Its strengths are a propagation scheme, which facilitates the prediction in time and style, and a noise model coherent with the manifold, which prevents divergence, and increases robustness. Experiments show that a combination of both techniques achieves state-of-the-art performance for human pose tracking in underconstrained scenarios.
Resumo:
Oxybutynin, a drug of choice in the treatment of urinary incontinence, has low oral bioavailability due to extensive first-pass metabolism. A toxic metabolite, N-desethyloxybutynin, has been linked to adverse reactions to oral oxybutynin. This study, therefore, reports on the design of an oxybutynin intravaginal ring (IVR) of reservoir design, comprising an oxybutynin silicone elastomer core encased in a non-medicated silicone sheath, manufactured by reaction injection moulding at 50oC. An unusually high initial burst release of oxybutynin (42.7 mg in 24 h) was observed in vitro with a full length core (100 mg drug loading), with subsequent non-zero order drug release. Use of fractional segment cores substantially reduced the burst effect, yielding linear cumulative drug release versus time plots from days 2 to 14. Thus, a 1/8 fractional segment core gave a 24 h burst of 11.28 mg oxybutynin and, thereafter, zero order release at the target dose of 5 mg/day over 14 days. Two oxybutynin cores, each 1/16 of full length, gave a greater release than a single 1/8 core, due to core segment end effects resulting in an increased surface area for release. The burst release was investigated by determining drug solubilities in the propan-1-ol product of elastomer condensation cure (390 mg/ml) and in the elastomer itself (13.9-20.21 mg/ml, by direct extraction and indirect thermal methods). These high oxybutynin solubilities were considered the major contributors to the burst effect. It was concluded that use of a fractional segment core would allow development of a suitable oxybutynin reservoir IVR.
Resumo:
In order to reduce potential uncertainties and conservatism in welded panel analysis procedures, understanding of the relationships between welding process parameters and static strength is required. The aim of this study is to determine and characterize the key process induced properties of advanced welding assembly methods on stiffened panel local buckling and collapse performance. To this end, an in-depth experimental and computational study of the static strength of a friction stir welded fuselage skin-stiffener panel subjected to compression loading has been undertaken. Four welding process effects, viz. the weld joint width, the width of the weld Heat Affected Zone, the strength of material within the weld Heat Affected Zone and the magnitude of welding induced residual stress, are investigated. A fractional factorial experiment design method (Taguchi) has been applied to identify the relative importance of each welding process effect and investigate effect interactions on both local skin buckling and crippling collapse performance. For the identified dominant welding process effects, parametric studies have been undertaken to identify critical welding process effect magnitudes and boundaries. The studies have shown that local skin buckling is principally influenced by the magnitude of welding induced residual stress and that the strength of material in the Heat Affected Zone and the magnitude of the welding induced residual stress have the greatest influence on crippling collapse behavior.
--------------------------------------------------------------------------------
Reaxys Database Information
|
Resumo:
Monomeric ruthenium(II) complexes [Ru(L)3]2+ containing unsymmetric bipyridine ligands [Where L = 5-methyl-2,2'-bipyridine (L1), 5-ethyl-2,2'-bipyridine (L2), 5-propyl-2,2'-bipyridine (L3), 5-(2-methylpropyl)-2,2'-bipyridine (L4), 5-(2,2-dimethylpropyl)-2,2'-bipyridine (L5) and 5-(carbomethoxy)-2,2'-bipyridine (L6)] have been studied and the meridional and facial isomers isolated by the use of cation-exchange column chromatography (SP Sephadex C-25) eluting with either sodium toluene-4-sulfonate or sodium hexanoate. The relative yield of the facial isomer was found to decrease with increasing steric bulk, preventing the isolation of fac-[Ru(L5)3]2+. The two isomeric forms were characterized by 1H NMR, with the complexes [Ru(L1-3)3]2+ demonstrating an unusually large coupling between the H6 and H4 protons. Crystals suitable for X-ray structural analysis of [Ru(L1)3]2+ were obtained as a mixture of the meridional and facial isomers, indicating that separation of this isomeric mixture could not be achieved by fractional crystallisation. The optical isomers of the complex [Ru(L3)3]2+ were chromatographically separated on SP Sephadex C-25 relying upon the inherent chirality of the support. It is apparent that chiral interactions can inhibit geometric isomer separation using this technique.
Resumo:
This paper reports a study carried out to develop a self-compacting fibre reinforced concrete containing a high fibre content with slurry infiltrated fibre concrete (SIFCON). The SIFCON was developed with 10% of steel fibres which are infiltrated by self-compacting cement slurry without any vibration. Traditionally, the infiltration of the slurry into the layer of fibres is carried out under intensive vibration. A two-level fractional factorial design was used to optimise the properties of cement-based slurries with four independent variables, such as dosage of silica fume, dosage of superplasticiser, sand content, and water/cement ratio (W/C). Rheometer, mini-slump test, Lombardi plate cohesion meter, J-fibre penetration test, and induced bleeding were used to assess the behaviour of fresh cement slurries. The compressive strengths at 7 and 28 days were also measured. The statistical models are valid for slurries made with W/C of 0.40 to 0.50, 50 to 100% of sand by mass of cement, 5 to 10% of silica fume by mass of cement, and SP dosage of 0.6 to 1.2% by mass of cement. This model makes it possible to evaluate the effect of individual variables on measured parameters of fresh cement slurries. The proposed models offered useful information to understand trade-offs between mix variables and compare the responses obtained from various test methods in order to optimise self-compacting SIFCON.
Resumo:
X-ray spectra of the late-type star AB Dor obtained with the XMM-Newton satellite are analyzed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyze flare and quiescent spectra, with emphasis on the Fe XVII 15 - 17 angstrom wavelength region. The Fe XVII 16.78 angstrom/ 15.01 angstrom line ratio increases significantly in the hotter flare plasma. This change in the ratio is opposite to the theoretical predictions and is attributed to the scattering of 15.01 angstrom line photons from the line of sight. The escape probability technique indicates an optical depth of approximate to 0.4 for the 15.01 angstrom line. During the flare, the electron density is 4.4(-1.6)(+2.7) x 10(10) cm(-3), and the fractional Fe abundance is 0.5 +/- 0.1 of the solar photospheric value Using these parameters, a path length of approximate to 8000 km is derived. There is no evidence of opacity in the quiescent X-ray spectrum of the star.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The inertia-corrected Debye model of rotational Brownian motion of polar molecules was generalized by Coffey et al. [Phys. Rev. E, 65, 32 102 (2002)] to describe fractional dynamics and anomalous rotational diffusion. The linear- response theory of the normalized complex susceptibility was given in terms of a Laplace transform and as a function of frequency. The angular-velocity correlation function was parametrized via fractal Mittag-Leffler functions. Here we apply the latter method and complex-contour integral- representation methods to determine the original time-dependent amplitude as an inverse Laplace transform using both analytical and numerical approaches, as appropriate. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is shown how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended to yield the empirical Havriliak-Negami (HN) equation of anomalous dielectric relaxation from a microscopic model based on a kinetic equation just as in the Debye model. This kinetic equation is obtained by means of a generalization of the noninertial Fokker-Planck equation of conventional Brownian motion (generally known as the Smoluchowski equation) to fractional kinetics governed by the HN relaxation mechanism. For the simple case of noninteracting dipoles it may be solved by Fourier transform techniques to yield the Green function and the complex dielectric susceptibility corresponding to the HN anomalous relaxation mechanism.