99 resultados para first-principles

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of catalytic behavior begins with one seemingly simple process, namely the hydrogenation of O to H2O on platinum. Despite the apparent simplicity its mechanism has been much debated. We have used density functional theory with,gradient corrections to examine microscopic reaction pathways for several elementary steps implicated in this fundamental catalytic process. We find that H2O formation from chemisorbed O and H atoms is a highly activated process. The largest barrier along this route, with a value of similar to1 eV, is the addition of the first H to O to produce OH. Once formed, however, OH groups are easily hydrogenated to H2O with a barrier of similar to0.2 eV. Disproportionation reactions with 1:1 and 2:1 stoichiometries of H2O and O have been examined as alternative routes for OH formation. Both stoichiometries of reaction produce OH groups with barriers that are much lower than that associated with the O + H reaction. H2O, therefore, acts as an autocatalyst in the overall H O formation process. Disproportionation with a 2:1 stoichiometry is thermodynamically and kinetically favored over disproportionation with a l:I stoichiometry. This highlights an additional (promotional) role of the second H2O molecule in this process. In support of our previous suggestion that the key intermediate in the low-temperature H2O formation reaction is a mixed OH and H2O overlayer we find that then is a very large barrier for the dissociation of the second H2O molecule in the 2:1 disproportionation process. We suggest that the proposed intermediate is then hydrogenated to H2O through a very facile proton transfer mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1x1) and (2x1) reconstructions of the (001) SrTiO3 surface were studied using the first-principles full-potential linear muffin-tin orbital method. Surface energies were calculated as a function of TiO2 chemical potential, oxygen partial pressure and temperature. The (1x1) unreconstructed surfaces were found to be energetically stable for many of the conditions considered. Under conditions of very low oxygen partial pressure the (2x1) Ti2O3 reconstruction [Martin R. Castell, Surf. Sci. 505, 1 (2002)] is stable. The question as to why STM images of the (1x1) surfaces have not been obtained was addressed by calculating charge densities for each surface. These suggest that the (2x1) reconstructions would be easier to image than the (1x1) surfaces. The possibility that the presence of oxygen vacancies would destabilise the (1x1) surfaces was also investigated. If the (1x1) surfaces are unstable then there exists the further possibility that the (2x1) DL-TiO2 reconstruction [Natasha Erdman Nature (London) 419, 55 (2002)] is stable in a TiO2-rich environment and for p(O2)>10(-18) atm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO oxidation on TiO2 supported Au has been studied using density functional theory calculations. Important catalytic roles of the oxide have been identified: (i) CO oxidation occurs at the interface between Au and the oxide with a very small barrier; and (ii) O-2 adsorption at the interface is the key step in the reaction. The physical origin of the oxide promotion effect has been further investigated: The oxide enhances electron transfer from the Au to the antibonding states of O-2, giving rise to (i) strong ionic bonding between the adsorbed O-2, Au, and the Ti cation; and (ii) a significant activation of O-2 towards CO oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of extensive first-principles calculations we studied the ferroelectric phase transition and the associated isotope effect in KH2PO4 (KDP). Our calculations revealed that the spontaneous polarization of the ferroelectric phase is due to electronic charge redistributions and ionic displacements which are a consequence of proton ordering, and not vice versa. The experimentally observed double-peaked proton distribution in the paraelectric phase cannot be explained by a dynamics of only protons. This requires, instead, collective displacements within clusters that include also the heavier ions. These tunneling clusters can explain the recent evidence of tunneling obtained from Compton scattering measurements. The sole effect of mass change upon deuteration is not sufficient to explain the huge isotope effect. Instead, we find that structural modifications deeply connected with the chemistry of the H bonds produce a feedback effect on tunneling that strongly enhances the phenomenon. The resulting influence of the geometric changes on the isotope effect agrees with experimental data from neutron scattering. Calculations under pressure allowed us to analyze the issue of universality in the disappearance of ferroelectricity upon compression. Compressing DKDP so that the distance between the two peaks in the deuteron distribution is the same as for protons in KDP, corresponds to a modification of the underlying double-well potential, which becomes 23 meV shallower. This energy difference is what is required to modify the O-O distance in such a way as to have the same distribution for protons and deuterons. At the high pressures required experimentally, the above feedback mechanism is crucial to explain the magnitude of the geometrical effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio simulations of a single molecule of HCl in liquid dimethyl imidazolium chloride [dmim][Cl] show that the acidic proton exists as a symmetric, linear ClHCl- species. Details of the solvation structure around this molecule are given. The proton-transfer process was investigated by applying a force along the antisymmetric stretch coordinate until the molecule broke. Changes in the free energy and local solvation structure during this process were investigated. In the reaction mechanism identified, a free chloride approaches the proton from the side. As the original ClHCl- distorts and the incoming chloride forms a new bond to the proton, one of the original chlorine atoms is expelled and a new linear molecule is formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles calculations of the Sigma 5(310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However, numerical results show a striking equivalence between the alkali metal Na and the semimetal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unraveled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the net reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nitrogen-vacancy (NV) center is a paramagnetic defect in diamond with applications as a qubit. Here, we investigate its electronic structure by using ab initio density functional theory for five different NV center models of two different cluster sizes. We describe the symmetry and energetics of the low-lying states and compare the optical frequencies obtained to experimental results. We compute the major transition of the negatively charged NV centers to within 25–100 meV accuracy and find that it is energetically favorable for substitutional nitrogens to donate an electron to NV0. The excited state of the major transition and the NV0 state with a neutral donor nitrogen are found to be close in energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive density function theory calculations are performed to study the mechanism of the formation of aldehyde and alcohol on Co surfaces in Fischer-Tropsch synthesis, a challenging issue in heterogeneous catalysis. Three possible pathways for the production of formaldehyde and methanol on flat and stepped Co(0001) surfaces are investigated: (i) CO + 4H -> CHO + 3H -> CH2O + 2H -> CH3O + H -> CH3OH; (ii) CO + 4H -> COH + 3H -> CHOH + 2H -> CH2OH + H -> CH3OH; and (iii) the coupling reactions of CH2 + O -> CH2O and CH3 + OH -> CH3OH. It is found that these pathways are generally favored at step sites, and the preferred mechanism is pathway (i) via CHO. Furthermore, the three traditional chain growth mechanisms in Fischer-Tropsch synthesis are semi quantitatively compared and discussed. Our results suggest that the two mechanisms involving oxygenate intermediates (the CO-insertion and hydroxycarbene mechanisms) are less important than the carbene mechanism in the production of long chain hydrocarbons. However, the CO-insertion mechanism may be responsible for the production of long-chain oxygenates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density-functional theory has been used to investigate the chemisorption of S, SH, and H2S as well as the coadsorption of S and H and SH and H on Pt(111). In addition reaction pathways and energy profiles for the conversion of adsorbed S and H into gas-phase H2S have been determined. It has been found that S, SH, and H2S bind preferentially at face-centered-cubic (fcc), bridge, and top sites, respectively. Both the S+H and SH+H reactions have high barriers (similar to1 eV) and high exothermicities (similar to1 eV). This reveals that adsorbed H2S and SH are highly unstable adsorbates on Pt(111) and that adsorbed S (and H) is the most stable SHX (X=0,1,2) intermediate on Pt(111) (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is some dispute as to whether methanol decomposition occurs by O-H bond scission or C-O bond scission. By carrying out density functional theory calculations, we investigate both scenario of the reaction pathways of methanol decomposition on a Pd(111) surface. It is shown that the O-H bond scission pathway is much more energetically favorable than the C-O bond scission pathway. The high reaction barrier in the latter case is found to be due to the poor bonding abilities of CH3 and OH with the surface at the reaction sites. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic ammonia synthesis is believed to proceed via dissociation of N-2 and H-2 with subsequent stepwise addition reactions from an adsorbed nitrogen atom to NH3. The first step, N-2 dissociation, has been thoroughly studied. However, little is known about the microscopic details of the stepwise addition reactions. To shed light on these stepwise addition reactions, density functional theory calculations with the generalized gradient approximation are employed to investigate NHx (x=1,3) formation on Ru(0001). Transition states and reaction barriers are determined in each elementary step. It is found that the reaction barriers for stepwise addition reactions are rather high, for example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. In addition, one of the stepwise addition reactions on a stepped surface is also considered. The reaction barrier is found to be much higher than that of N-2 dissociation on the same stepped surface, which indicates the importance of stepwise addition reactions in ammonia synthesis. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microkinetic model is developed in the free energy landscape based on density functional theory (DFT) to quantitatively investigate the reaction mechanism of chemoselective partial hydrogenation of crotonaldehyde to crotyl alcohol over Pt(1 1 1) at the temperature of 353 K. Three different methods (mobile, immobile and collision theory models) were carried out to obtain free energy barrier of adsorption/desorption processes. The results from mobile and collision theory models are similar. The calculated TOFs from both models are close to the experiment value. However, for the immobile model, in which the free energy barrier of desorption approaches the energy barrier, the calculated TOF is 2 orders of magnitude lower than the other models. The difficulty of adsorption/ desorption may be overestimated in the immobile model. In addition, detailed analyses show that for the surface hydrogenation elementary steps, the entropy and internal energy effects are small under the reaction condition, while the zero-point-energy (ZPE) correction is significant, especially for the multi-step hydrogenation reaction. The total energy with the ZPE correction approaches to the full free energy calculation for the surface reaction under the reaction condition. (c) 2011 Elsevier B.V. All rights reserved.