32 resultados para fire safety design

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service.

This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses.

The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The non-flammability of ionic liquids (ILs) is often highlighted as a safety advantage of ILs over volatile organic compounds (VOCs), but the fact that many ILs are not flammable themselves does not mean that they are safe to use near fire and/or heat sources; a large group of ILs ( including commercially available ILs) are combustible due to the nature of their positive heats of formation, oxygen content, and decomposition products.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Design-build experiences (DBEs) are an essential element of any programme based on the CDIO methodology. They enable students to develop practical hands-on skills, they enable the learning of theory by stealth and they provide a forum for developing professional skills such as team working and project management. The hands-on aspect of certain DBEs has significant risk associated with it, which must be addressed through the formal evaluation of risks and the development of a methodology for controlling them. This paper considers the aspects of design-build experiences that may impact on student safety. In particular, it examines the risk associated with each of the four stages of CDIO and gives examples of risks which may commonly apply across engineering disciplines. A system for assessing and controlling the risks in any particular DBE is presented and the paper finishes by discussing the significance of health and safety in the educational environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to identify the various managerial constraints, difficulties and issues encountered and resulting strategies adopted, to aid in the management of the various and often complex health and safety concerns, which occur within a confined construction site. This is achieved through classifying the various managerial burdens encountered with the numerous strategies adopted, to ensure the successful management of such confined environments within the realm of health and safety. Through an extensive literature review and detailed interviews, a comprehensive insight into the health and safety concerns within a confined construction site environment is portrayed. The leading managerial strategies to the management of health and safety on confined construction sites may be listed as follows; (1) Traffic Management Plan, (2) Effective Resource Management Plan, (3) Temporary Facilities Management Plan, (4) Safe System of Work Plan, (5) Site Safety Plan, (6) Design Site Layout, (7) Space Management Plan, (8) Effective Program Management, and (9) Space Scheduling. Based on the research, it can be concluded, that through effective management of these issues identified coupled with implementing the various strategies highlighted; successful management of health and safety within a confined construction site environment is attainable.