137 resultados para finite-element-analysis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new elastic–viscoplastic (EVP) soil model has been used to simulate the measured deformation response of a soft estuarine soil loaded by a stage-constructed embankment. The simulation incorporates prefabricated vertical drains installed in the foundation soils and reinforcement installed at the base of the embankment. The numerical simulations closely matched the temporal changes in surface settlement beneath the centerline and shoulder of the embankment. More importantly, the elastic–viscoplastic model simulated the pattern and magnitudes of the lateral deformations beneath the toe of the embankment — a notoriously difficult aspect of modelling the deformation response of soft soils. Simulation of the excess pore-water pressure proved more difficult because of the heterogeneous nature of the estuarine deposit. Excess pore-water pressures were, however, mapped reasonably well at three of the six monitoring locations. The simulations were achieved using a small set of material constants that can easily be obtained from standard laboratory tests. This study validates the use of the EVP model for problems involving soft soil deposits beneath loading from a geotechnical structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of 82 web crippling tests are presented, with 20 tests conducted on channel sections without web openings and 62 tests conducted on channel sections with web openings. The tests consider both end-two-flange and interior-two-flange loading conditions. In the case of the tests with web openings, the hole was located directly under the concentrated load. The concentrated load was applied through bearing plates; the effect of different bearing lengths is investigated. In addition, the cases of both flanges fastened and unfastened to the support is considered. A non-linear elasto-plastic finite element model is described, and the results compared against the laboratory test results; a good agreement was obtained in terms of both strength and failure modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout design development of satellite structure, stress engineer is usually challenged with randomness in applied loads and material properties. To overcome such problem, a risk-based design is applied which estimates satellite structure probability of failure under static and thermal loads. Determining probability of failure can help to update initially applied factors of safety that were used during structure preliminary design phase. These factors of safety are related to the satellite mission objective. Sensitivity-based analysis is to be implemented in the context of finite element analysis (probabilistic finite element method or stochastic finite element method (SFEM)) to determine the probability of failure for satellite structure or one of its components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.

This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.