19 resultados para feedforward backpropagation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-phase four-wire shunt active power filter for harmonic mitigation and reactive power compensation in power systems supplying nonlinear loads is presented. Three adaptive linear neurons are used to tackle the desired three-phase filter current templates. Another feedforward three-layer neural network is adopted to control the output filter compensating currents online. This is accomplished by producing the appropriate switching patterns of the converter's legs IGBTs. Adequate tracking of the filter current references is obtained by this method. The active filter injects the current required to compensate for the harmonic and reactive components of the line currents, Simulation results of the proposed active filter indicate a remarkable improvement in the source current waveforms. This is reflected in the enhancement of the unified power quality index defined. Also, the filter has exhibited quite a high dynamic response for step variations in the load current, assuring its potential for real-time applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the application of regularisation to the training of feedforward neural networks, as a means of improving the quality of solutions obtained. The basic principles of regularisation theory are outlined for both linear and nonlinear training and then extended to cover a new hybrid training algorithm for feedforward neural networks recently proposed by the authors. The concept of functional regularisation is also introduced and discussed in relation to MLP and RBF networks. The tendency for the hybrid training algorithm and many linear optimisation strategies to generate large magnitude weight solutions when applied to ill-conditioned neural paradigms is illustrated graphically and reasoned analytically. While such weight solutions do not generally result in poor fits, it is argued that they could be subject to numerical instability and are therefore undesirable. Using an illustrative example it is shown that, as well as being beneficial from a generalisation perspective, regularisation also provides a means for controlling the magnitude of solutions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated visuomotor adaptation using an isometric, target-acquisition task. Following trials with no rotation, two participant groups were exposed to a random sequence of 30 degrees clockwise (CW) and 60 degrees counter-clockwise (CCW) rotations, with (DUAL-CUE), or without (DUAL-NO CUE), colour cues that enabled each environment (non-rotated, 30 degrees CW and 60 degrees CCW) to be identified. A further three groups experienced only 30 degrees CW trials or only 60 degrees CCW trials (SINGLE rotation groups) in which each visuomotor mapping was again associated with a colour cue. During training, all SINGLE groups reduced angular deviations of the cursor path during the initial portion of the movements, indicating feedforward adaptation. Consistent with the view that the adaptation occurred automatically via recalibration of the visuomotor mapping (Krakauer et al. 1999), post-training aftereffects were observed, despite colour cues that indicated that no rotation was present. For the DUAL-CUE group, angular deviations decreased with training in the 60 degrees trials, but were unchanged in the 30 degrees trials, while for the DUAL-NO CUE group angular deviations decreased for the 60 degrees CW trials but increased for the 30 degrees CW trials. These results suggest that in a dual adaptation paradigm a colour cue can permit delineation of the two environments, with a subsequent change in behaviour resulting in improved performance in at least one of these environments. Increased reaction times within the training block, together with the absence of aftereffects in the post-training period for the DUAL-CUE group suggest an explicit cue-dependent strategy was used in an attempt to compensate for the rotations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isometric torque-production task was used to investigate interference and retention in adaptation to multiple visuomotor environments. Subjects produced isometric flexion-extension and pronation-supination elbow torques to move a cursor to acquire targets as quickly as possible. Adaptation to a 30 degrees counter-clockwise (CCW) rotation (task A), was followed by a period of rest (control), trials with no rotation (task B0), or trials with a 60 degrees clockwise (CW) rotation (task B60). For all groups, retention of task A was assessed 5 h later. With initial training, all groups reduced the angular deviation of cursor paths early in the movements, indicating feedforward adaptation. For the control group, performance at commencement of the retest was significantly better than that at the beginning of the initial learning. For the B0 group, performance in the retest of task A was not dissimilar to that at the start of the initial learning, while for the B60 group retest performance in task A was markedly worse than initially observed. Our results indicate that close juxtaposition of two visuomotor environments precludes improved retest performance in the initial environment. Data for the B60 group, specifically larger angular errors upon retest compared with initial exposures, are consistent with the presence of anterograde interference. Furthermore, full interference occurred even when the visuomotor environment encountered in the second task was not rotated (B0). This latter novel result differs from those obtained for force field learning, where interference does not occur when task B does not impose perturbing forces, i.e., when B consists of a null field (Brashers-Krug et al., Nature 382:252-255, 1996). The results are consistent with recent proposals suggesting different interference mechanisms for visuomotor (kinematic) compared to force field (dynamic) adaptations, and have implications for the use of washout trials when studying interference between multiple visuomotor environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter investigates the optimum decision delay and tap-length of the finite-length decision feedback equalizer. First we show that, if the feedback filter (FBF) length N-b is equal to or larger than the channel memory upsilon and the decision delay Delta is smaller than the feedforward filter (FFF) length N-f, then only the first Delta + 1 elements of the FFF can be nonzero. Based on this result we prove that the maximum effective FBF length is equal to the channel memory upsilon, and if N-b greater than or equal to upsilon and N-f is long enough, the optimum decision delay that minimizes the MMSE is N-f - 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a decision feedback equalizer (DFE), the structural parameters, including the decision delay, the feedforward filter (FFF), and feedback filter (FBF) lengths, must be carefully chosen, as they greatly influence the performance. Although the FBF length can be set as the channel memory, there is no closed-form expression for the FFF length and decision delay. In this letter, first we analytically show that the two-dimensional search for the optimum FFF length and decision delay can be simplified to a one-dimensional search and then describe a new adaptive DFE where the optimum structural parameters can he self-adapted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prototype X-band scale model for a quasi-optical three-port circulator utilising a double-layer circularly polarising frequency selective surface is proposed. The operating principles and measured characteristics of the device are discussed. A prototype device operating at 9.9 GHz has been built and validated experimentally. The port 1 to port 2 insertion loss of the quasi-circulator has been measured to be 2 dB, while port 1 to port 3 isolation is 16 dB. It is demonstrated that port 1 to 3 isolation can be increased to 25 dB by embedding the quasi-circulator in a feedforward setup.