2 resultados para fatigue control
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The small-satellite thermal subsystem main function is to control temperature ranges on equipments, and payload for the orbit specified. Structure subsystem has to ensure the satellite structure integrity. Structure integrity should meet two constraints; first constraint is accepted fatigue damage due to cyclic temperature, and second one is tolerable mounting accuracy at payload and Attitude Determination and Control Subsystem (ADCS) equipments’ seats. First, thermal analysis is executed by applying finitedifference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, thermal fatigue analysis is performed applying finite-element analysis (ANSYS) to calculate the resultant damage due to on-orbit cyclic stresses, and structure deformations at the payload and ADCS equipments seats.
Resumo:
The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated.