6 resultados para fMRI data
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H 8 adaptive filters (finite memory, exponentially weighted, and time-varying) for accurate estimation and detection of the HDR. The H 8 approach is used because it safeguards against the worst case disturbances and makes no assumptions on the (statistical) nature of the signals [B. Hassibi and T. Kailath, in Proc. ICASSP, 1995, vol. 2, pp. 949-952; T. Ratnarajah and S. Puthusserypady, in Proc. 8th IEEE Workshop DSP, 1998, pp. 1483-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections.
Resumo:
Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.
Resumo:
Multivariate classification techniques have proven to be powerful tools for distinguishing experimental conditions in single sessions of functional magnetic resonance imaging (fMRI) data. But they are vulnerable to a considerable penalty in classification accuracy when applied across sessions or participants, calling into question the degree to which fine-grained encodings are shared across subjects. Here, we introduce joint learning techniques, where feature selection is carried out using a held-out subset of a target dataset, before training a linear classifier on a source dataset. Single trials of functional MRI data from a covert property generation task are classified with regularized regression techniques to predict the semantic class of stimuli. With our selection techniques (joint ranking feature selection (JRFS) and disjoint feature selection (DJFS)), classification performance during cross-session prediction improved greatly, relative to feature selection on the source session data only. Compared with JRFS, DJFS showed significant improvements for cross-participant classification. And when using a groupwise training, DJFS approached the accuracies seen for prediction across different sessions from the same participant. Comparing several feature selection strategies, we found that a simple univariate ANOVA selection technique or a minimal searchlight (one voxel in size) is appropriate, compared with larger searchlights.
Resumo:
Most studies of conceptual knowledge in the brain focus on a narrow range of concrete conceptual categories, rely on the researchers' intuitions about which object belongs to these categories, and assume a broadly taxonomic organization of knowledge. In this fMRI study, we focus on concepts with a variety of concreteness levels; we use a state of the art lexical resource (WordNet 3.1) as the source for a relatively large number of category distinctions and compare a taxonomic style of organization with a domain-based model (associating concepts with scenarios). Participants mentally simulated situations associated with concepts when cued by text stimuli. Using multivariate pattern analysis, we find evidence that all Taxonomic categories and Domains can be distinguished from fMRI data and also observe a clear concreteness effect: Tools and Locations can be reliably predicted for unseen participants, but less concrete categories (e.g., Attributes, Communications, Events, Social Roles) can only be reliably discriminated within participants. A second concreteness effect relates to the interaction of Domain and Taxonomic category membership: Domain (e.g., relation to Law vs. Music) can be better predicted for less concrete categories. We repeated the analysis within anatomical regions, observing discrimination between all/most categories in the left middle occipital and temporal gyri, and more specialized discrimination for concrete categories Tool and Location in the left precentral and fusiform gyri, respectively. Highly concrete/abstract Taxonomic categories and Domain were segregated in frontal regions. We conclude that both Taxonomic and Domain class distinctions are relevant for interpreting neural structuring of concrete and abstract concepts.