2 resultados para eye modeling

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE:

To estimate the heritability of peripheral refraction in Chinese children and adolescents.

METHODS:

The authors examined 72 monozygotic (MZ) twins and 48 dizygotic (DZ) twins aged 8 to 20 years from a population-based twin registry. Temporal and nasal peripheral refraction, each 40° from the visual axis, and axial refraction were measured using an autorefractor. Relative peripheral refractive error (RPRE) was defined as the peripheral refraction minus the axial refraction. Heritability was assessed by structural equation modeling after adjustment for age and sex.

RESULTS:

The mean and SD of temporal refraction (T(40)), nasal refraction (N(40)), RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were -0.27 ± 2.0 D, 0.36 ± 2.19 D, 1.18 ± 1.39 D, 1.80 ± 1.69 D, and -0.62 ± 1.58 D, respectively. The intraclass correlations for T(40) refraction, N(40) refraction, RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were 0.87, 0.83, 0.65, 0.74, and 0.58 for MZ pairs and 0.49, 0.42, 0.30, 0.41, and 0.32 for DZ pairs, respectively. A model with additive genetic and unique environmental effects was the most parsimonious, with heritability values estimated as 0.84, 0.76, 0.63, 0.70, and 0.55, respectively, for the peripheral refractive parameters.

CONCLUSIONS:

Additive genetic effects appear to explain most of the variance in peripheral refraction and relative peripheral refraction when adjusting for the effects of axial refraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE:

This study investigated the heritability of lens thickness (LT) and relative lens thickness (LT/axial length, rLT) measured by Lenstar among Chinese children and adolescents in the Guangzhou Twin Eye study.

METHODS:

Twins aged 8 to 22 years were enrolled from the Guangzhou Twin Registry. A series of LT and axial length (AL) measurements using the Lenstar were taken for each twin. Zygosity was confirmed by genotyping in all same-sex twin pairs. Heritability was assessed by structural variance component genetic modeling, after adjustment for age and sex with the Mx program.

RESULTS:

Seven hundred sixty-eight twin pairs (482 monozygotic [MZ] and 286 dizygotic [DZ] twins) were available for data analysis. The mean (standard deviation) LT and rLT were 3.45 (0.18) mm and 0.142 (0.01), respectively. The intraclass correlation coefficients (ICCs) for LT were 0.90 for the MZ and 0.39 for the DZ twins; and those for rLT were 0.90 for the MZ and 0.40 for the DZ twins, respectively. The best-fitting model yielded 89.5% (95% CI: 87.8%-91.0%) of additive genetic effects and 10.5% (95% CI: 9.0%-12.2%) of unique environmental effects for LT, and 89.3% (95% CI: 89.2%-89.3%) of additive genetic effects and 10.7% (95% CI: 10.7%-11.4%) of unique environmental effects for rLT.

CONCLUSIONS:

This study confirms that the LT in young healthy subjects may be mainly affected by additive genetic factors. High heritability remains even when the data are corrected for the influence of AL with the use of rLT.