50 resultados para eusocial insects
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
For primitively eusocial insects in which a single foundress establishes a nest at the start of the colony cycle, the solitary provisioning phase before first worker emergence represents a risky period when other, nestless foundresses may attempt to usurp the nest. In the primitively eusocial sweat bee Lasioglossum malachurum (Hymenoptera, Halictidae), spring foundresses compete for nests which are dug into hard soil. Nest-searching foundresses (‘floaters’) frequently inspected nests during this solitary phase and thereby exerted a usurpation pressure on resident queens. Usurpation has been hypothesised to increase across the solitary provisioning phase and favour closure of nests at an aggregation, marking the termination of the solitary provisioning phase by foundresses, before worker emergence. However, our experimental and observational data suggest that usurpation pressure may remain constant or even decrease across the solitary provisioning phase and therefore cannot explain nest closure before first worker emergence. Levels of aggression during encounters between residents and floaters were surprisingly low (9% of encounters across 2 years), and the outcome of confrontations was in favour of residents (resident maintains residency in 94% of encounters across 2 years). Residents were significantly larger than floaters. However, the relationship between queen size and offspring production, though positive, was not statistically significant. Size therefore seems to confer a considerable advantage to a queen during the solitary provisioning phase in terms of nest residency, but its importance in terms of worker production appears marginal. Factors other than intraspecific usurpation need to be invoked to explain the break in provisioning activity of a foundress before first worker emergence.
Resumo:
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12–18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2–3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north–south cline of increasingly effective queen control of worker behaviour.
Resumo:
The sweat bees (Family Halictidae) are a socially diverse taxon in which eusociality has arisen independently numerous times. The obligate, primitively eusocial Lasioglossum malachurum, distributed widely throughout Europe, has been considered the zenith of sociality within halictids. A single queen heads a colony of smaller daughter workers which, by mid-summer, produce new sexuals (males and gynes), of which only the mated gynes overwinter to found new colonies the following spring. We excavated successfully 18 nests during the worker- and gyne-producing phases of the colony cycle and analysed each nest's queen and either all workers or all gynes using highly variable microsatellite loci developed specifically for this species. Three important points arise from our analyses. First, queens are facultatively polyandrous (queen effective mating frequency: range 1–3, harmonic mean 1.13). Second, queens may head colonies containing unrelated individuals (n = 6 of 18 nests), most probably a consequence of colony usurpation during the early phase of the colony cycle before worker emergence. Third, nonqueen's workers may, but the queen's own workers do not, lay fertilized eggs in the presence of the queen that successfully develop into gynes, in agreement with so-called 'concession' models of reproductive skew
Resumo:
Eusociality, which occurs among mammals only in two species of African mole-rat, is characterized by division of labour between morphologically distinct 'castes'1. In Damaraland mole-rats (Cryptomys damarensis), colony labour is divided between 'infrequent worker' and 'frequent worker' castes2. Frequent workers are active year-round and together perform more than 95% of the total work of the colony, whereas infrequent workers typically perform less than 5% of the total work3. Anecdotal evidence suggests that infrequent workers may act as dispersers, with dispersal being limited to comparatively rare periods when the soil is softened by moisture4, 5. Here we show that infrequent workers and queens increase their daily energy expenditure after rainfall whereas frequent workers do not. Infrequent workers are also fatter than frequent workers. We suggest that infrequent workers constitute a physiologically distinct dispersing caste, the members of which, instead of contributing to the work of the colony and helping the queen to reproduce, build up their own body reserves in preparation for dispersal and reproduction when environmental conditions are suitable.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
Sweat bees (family Halictidae) comprise a numerous and diverse group that are arguably among the most socially labile of all insect taxa. Given the lack of highly variable markers for eusocial species of the family, we developed a suite of dinucleotide and trinucleotide markers for one of its members, the Eurasian Lasioglossum malachurum, and used them to amplify DNA from other halictids. Loci were highly variable in L. malachurum and amplified DNA from many other halictids.
Resumo:
The role of fire within Pinus-mire ecosystems is explored by focusing on a palaeoentomological investigation of the extensive burnt fossil forest preserved within the basal deposits of the raised mires of Thorne and Hatfield Moors, Humberhead Levels, eastern England. Remains of charred tree macrofossils (roots, stumps and trunks) are widely distributed across both sites, mainly comprising Pinus and Betula. Evidence from this research and elsewhere suggest fires were a common event on Pinus mires, and may indicate that such episodes played an important role in the development of raised bogs. A fire-loving (pyrophilous) insect fauna appears to have been attracted to the burnt areas and the decline and extirpation in Britain of a number of pyrophilous species (e.g. Stagetus borealis Isrealsson) suggests the former importance of this type of habitat within British Pinus-mire systems. The lack of consideration given to the role of natural fires within the British landscape is questioned and the interpretation of charcoal within mire deposits as a possible anthropogenic indicator is highlighted as an area that would benefit some reconsideration.
Resumo:
There is growing evidence that insects in high-density populations invest relatively more in pathogen resistance than those in low-density populations (i.e. density-dependent prophylaxis). Such increases in resistance are often accompanied by cuticular melanism, which is characteristic of the high-density form of many phase polyphenic insects. Both melanism and pathogen resistance involve the prophenoloxidase enzyme system. In this paper the link between resistance, melanism and phenoloxidase activity is examined in Spodoptera lanae. In S. exempta, cuticular melanism was positively correlated with phenoloxidase activity in the cuticle, haemolymph and midgut. Melanic S. exempta larvae were found to melanize a greater proportion of eggs of the ectoparasitoid Euplectrus laphygmae than non-melanic larvae, and melanic S. littoralis were more resistant to the entomopathogenic fungus Beauveria bassiana (in S. exempta the association between melanism and fungal resistance was non-signficant). These results strengthen the link between melanism and disease resistance and implicate the involvement of phenoloxidase.
Resumo:
Many insect species vary in their degree of foraging specialisation, with many bee species considered polyphagic (polylectic). Wild, non-managed bee species vary in their conservation status, and species-specific biological traits such as foraging specialisation may play an important role in determining variance in population declines. Current agri-environment schemes (AESs) prescribe the introduction of flower seed mixes for agricultural systems to aid the conservation of wild bees. However, the extent to which flower combinations adequately meet bee foraging requirements is poorly known. We quantitatively assessed pollen use and selectivity using two statistical approaches: Bailey's Intervals and Compositional Analysis, in an examplar species, a purportedly polylectic and rare bee, Colletes floralis, across 7 sites through detailed analysis of bee scopal pollen loads and flower abundance. Both approaches provided good congruence, but Compositional Analysis was more robust to small sample sizes. We advocate its use for the quantitative determination of foraging behaviour and dietary preference. Although C. floralis is polylectic, it showed a clear dietary preference for plants within the family Apiaceae. Where Apiaceae was uncommon, the species exploited alternative resources. Other plant families, such as the Apiaceae, could be included, or have their proportion increased in AES seed mixes, to aid the management of C. floralis and potentially other wild solitary bees of conservation concern. © 2011 The Authors. Insect Conservation and Diversity © 2011 The Royal Entomological Society.
Resumo:
Countless numbers of insects migrate within and between continents every year, and yet we know very little about the ultimate reasons and proximate mechanisms that would explain these mass movements. Here we suggest that perhaps the most important reason for insects to migrate is to hedge their reproductive bets. By spreading their breeding efforts in space and time, insects distribute their offspring over a range of environmental conditions. We show how the study of individual long-distance movements of insects may contribute to a better understanding of migration. In the future, advances in tracking methods may enable the global surveillance of large insects such as desert locusts.
Resumo:
The ability to discriminate degrees of relatedness may be expected to evolve if it allows unreciprocated altruism to be preferentially directed towards kin (Hamilton in J Theor Biol 7:1-16, 1964). We explored the possibility of kin recognition in the primitively eusocial halictid bee Lasioglossum malachurum by investigating the reliability of worker odour cues that can be perceived by workers to act as indicators of either nest membership or kinship. Cuticular and Dufour's gland compounds varied significantly among colonies of L. malachurum, providing the potential for nestmate discrimination. A significant, though weak, negative correlation between chemical distance and genetic relatedness (r = -0.055, p
Resumo:
Sweat bees (Halictidae) exhibit great interspecific and intraspecific diversity in their social organisation, yet there is remarkably little information on the sociogenetic organisation of any species. Lasioglossum malachurum is a eusocial sweat bee with an annual lifecycle that exhibits considerable variation in its social organisation across its wide geographic range from northern to southern Europe. We collected all adults from 31 L. malachurum nests at Eichkogl, Austria, near the latitudinal centre of its distribution, and genotyped 148 workers using 5 highly variable microsatellite loci developed for this species. Nests were often queenless (48% of nests) during the second phase of worker activity, when colonies were provisioning the sexual brood. Pedigree reconstruction and estimates of nestmate genetic relatedness demonstrated that nests often (32% of nests) contained alien workers, probably as a result of worker drifting from their natal to a foreign nest. Queen effective mating frequency was variable (harmonic mean m(e) = 1.24), but sometimes high (maximum 2.7). These data demonstrate that nests of L. malachurum do not have a classical eusocial sociogenetic organisation (monogyny, monandry) and thereby pose a challenge to exclusively relatedness based arguments for the evolution of eusociality in the taxon.