74 resultados para epitaxial lateral overgrowth
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We report on differential etching behavior of the different orientations of the polarization in BiFeO3 (BFO), similar to other ferroelectrics, such as LiNbO3. We show how this effect can be used to fabricate epitaxial BiFeO3 nanostructures. By means of piezoresponse force microscopy (PFM) domains of arbitrary shape and size can be poled in an epitaxial BiFeO3 film, which are then reproduced in the film morphology by differential etching. Structures with a lateral size smaller than 200 nm were fabricated and very good retention properties as well as a highly increased piezoelectric response were detected by PFM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630027]
Resumo:
Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.48)O(3) or PbZr(0.2)Ti(0.8)O(3), with large range order and lateral dimensions from 200 nm to 1 micron. METHODS: The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM) and magnetic force microscopy (MFM), respectively. RESULTS: PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. CONCLUSION: These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.
Resumo:
The purpose of this study was to determine whether the prevalence and severity of gingival overgrowth in renal transplant recipients concomitantly treated with cyclosporin and a calcium channel blocker was associated with functional polymorphisms within the signal sequence of the transforming growth factor-(TGF)beta1 gene.
Resumo:
Background: Unsightly gingival overgrowth affects many individuals immunosuppressed with cyclosporin A (CsA), Current management involves repeated periodontal surgery and intensive hygienist support. Tacrolimus is an effective alternative immunosuppressive agent for renal transplantation which does not appear to produce gingival enlargement.
Resumo:
Background/aims, To investigate whether the choice of calcium channel blocker, used in conjunction with cyclosporin A, affected the prevalence of gingival overgrowth.
Resumo:
Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.
Resumo:
X-ray analysis of ferroelectric thin layers of Ba1/2Sr1/2TiO3 with different thicknesses reveals the presence of strain gradients across the films and allows us to propose a functional form for the internal strain profile. We use this to calculate the influence of strain gradient, through flexoelectric coupling, on the degradation of the ferroelectric properties of films with decreasing thickness, in excellent agreement with the observed behavior. This paper shows that strain relaxation can lead to smooth, continuous gradients across hundreds of nanometers, and it highlights the pressing need to avoid such strain gradients in order to obtain ferroelectric films with bulklike properties.
Resumo:
Concentrations of the coccidiostat nicarbazin as low as 2 mg/kg in feed can result in violative drug residues arising in poultry liver. A lateral flow device (LFD) was developed for the detection of contaminating concentrations of nicarbazin following solvent extraction of poultry feeds. Test results, as determined by both visual and instrumental measurement, are available within minutes. For 22 feed samples, nicarbazin-free and fortified at 2 mg/kg, the % relative inhibition ranged from 0 to 45% and from 53 to 85%, respectively. Nicarbazin contamination at the critical concentration (2 mg/kg) can be determined in all cases providing the sampling is representative. A wide range of feed samples taken at a mill that incorporated nicarbazin into poultry feed were analyzed. Data generated for these samples by both the LFDs and a mass spectrometric method were compared, and a significant correlation was achieved.
Resumo:
The adsorption of a metal monolayer on a foreign substrate generates a change in the surface stress. We calculate this change for a number of substrate/adsorbate systems using the embedded-atom method. The results are compared with those obtained from a continuum model. A cycle, in which the stretching of a substrate/adsorbate system is decomposed into several steps, helps in understanding the numerical results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time.As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.