23 resultados para environmental condition assessment
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Thousands of Neolithic and Bronze Age open-air rock art panels exist across the countryside in northern England. However, desecration, pollution, and other factors are threatening the survival of these iconic stone monuments. Evidence suggest that rates of panel deterioration may be increasing, although it is not clear whether this is due to local factors or wider environmental influences accelerated by environmental change. To examine this question, 18 rock art panels with varied art motifs were studied at two major panel locations at Lordenshaw and Weetwood Moor in Northumberland. A condition assessment
tool was used to first quantify the level of deterioration of each panel (called “staging”). Stage estimates then were compared statistically with 27 geochemical and physical descriptors of local environments, such as soil moisture, salinity, pH, lichen coverage, soil anions and cation levels, and panel orientation, slope, and standing height. In parallel, climate modelling was performed using UKCP09 to assess how projected climatic conditions (to 2099) might affect the environmental descriptors most correlated with elevated stone deterioration. Only two descriptors significantly correlated (P < 0.05) with increased stage: the standing height of the panel and the exchangeable cation content of the local soils, although moisture conditions also were potentially influential at some panels. Climate modelling predicts warming temperatures, more seasonally variable precipitation, and increased wind speeds, which hint stone deterioration could accelerate in the future due to increased physiochemical weathering. We recommend key panels be targeted for immediate management intervention, focusing on reducing wind exposures, improving site drainage, and potentially immobilizing soil salts.
Resumo:
An academic–industrial partnership was formed with the aim of constructing a natural stone database for Northern Ireland that could be used by the public and practitioners to understand both the characteristics of the stone used in construction across Northern Ireland and how it has performed in use, and, through a linked database of historical quarries, explore the potential for obtaining locally sourced replacement stone. The aims were to improve the level of conservation specification by those with a duty of care for historical structures, and to enhance the quality of the conservation work undertaken by archi- tects and contractors through their improved knowledge of stone and stone decay processes.
Resumo:
Seafloor massive sulfides (SMS) contain commercially viable quantities of high grade ores, making them attractive prospect sites for marine mining. SMS deposits may also contain hydrothermal vent ecosystems populated by high conservation value vent-endemic species. Responsible environmental management of these resources is best achieved by the adoption of a precautionary approach. Part of this precautionary approach involves the Environmental Impact Assessment (EIA) of exploration and exploitative activities at SMS deposits. The VentBase 2012 workshop provided a forum for stakeholders and scientists to discuss issues surrounding SMS exploration and exploitation. This forum recognised the requirement for a primer which would relate concepts underpinning EIA at SMS deposits. The purpose of this primer is to inform policy makers about EIA at SMS deposits in order to aid management decisions. The primer offers a basic introduction to SMS deposits and their associated ecology, and the basic requirements for EIA at SMS deposits; including initial data and information scoping, environmental survey, and ecological risk assessment. © 2013 Elsevier Ltd.
Resumo:
Mining seafloor massive sulfides for metals is an emergent industry faced with environmental management challenges. These revolve largely around limits to our current understanding of biological variability in marine systems, a challenge common to all marine environmental management. VentBase was established as a forum where academic, commercial, governmental, and non-governmental stakeholders can develop a consensus regarding the management of exploitative activities in the deep-sea. Participants advocate a precautionary approach with the incorporation of lessons learned from coastal studies. This workshop report from VentBase encourages the standardization of sampling methodologies for deep-sea environmental impact assessment. VentBase stresses the need for the collation of spatial data and importance of datasets amenable to robust statistical analyses. VentBase supports the identification of set-asides to prevent the local extirpation of vent-endemic communities and for the post-extraction recolonization of mine sites. © 2013.
Resumo:
Ancient stone monuments (ASMs), such as standing stones and rock art panels, are powerful and iconic expressions of Britain’s rich prehistoric past that have major economic and tourism value. However, ASMs are under pressure due to increasing anthropogenic exposure and changing climatic conditions, which accelerate their rates of disrepair. Although scientific data exists on the integrity of stone monuments, most applies to “built” systems; therefore, additional work specific to ASMs in the countryside is needed to develop better-informed safeguarding strategies. Here, we use Neolithic and Bronze Age rock art panels across Northern England as a case study for delineating ASM management actions required to enhance monument preservation. The state of the rock art is described first, including factors that led to current conditions. Rock art management approaches then are described within the context of future environments, which models suggest to be more dynamic and locally variable. Finally, a Condition Assessment and Risk Evaluation (CARE) scheme is proposed to help prioritise interventions; an example of which is provided based on stone deterioration at Petra in Jordon. We conclude that more focused scientific and behavioural data, specific to deterioration mechanisms, are required for an ASM CARE scheme to be successful.
Resumo:
This article examines the nature and scope of emerging cross-border participatory rights under European Community environmental law. It reviews the legal and political forces that have stimulated the development of such rights and also the specific nature of the rights conferred by three major legislative initiatives: the Community Directives on Environmental Impact Assessment, Integrated Pollution Prevention and Control, and the Water Framework Directive. The article concludes with a case study on Ireland which assesses the likely significance of these cross-border participatory rights for transboundary environmental governance in Ireland.
Resumo:
Environmental Impact Assessment has gained a prominent position as a tool to evaluate the environmental effects of economic activities. However, all approaches proposed so far use a burden-oriented logic. They concentrate on the different environmental impacts in order to ascertain the overall environmental damage caused by economic activity. This paper argues that such a burden-oriented view is (a) hampered by a series of methodological shortcomings which hinders its widespread use in practice; and (b) is analytically incomplete. The paper proposes a value-oriented approach to impact assessment. For this purpose an economic analysis of the optimal use of environmental and social resources is conducted from both a burden-oriented and a value-oriented standpoint. The basic logic of a value-oriented impact assessment is explained, as well as the resulting economic conditions for an optimal use of resources. In addition, it is shown that value- and burden-oriented approaches are complementary to achieve optimality. Finally, the paper discusses the conditions under which the use of burden- or value-oriented impact assessments is appropriate, respectively.
Resumo:
Copper levels of nearly 500 mg l(-1) were measured in aqueous extracts of soil and sediment samples from the lowlands of Antofagasta. Arsenic levels of up to 183 mg l(-1) were found in river sediments, and 27.5 mg l(-1) arsenic was found at the location of a dam where potable water is extracted. This indicates that the arsenic contamination of water supplies reported recently for the pre-Andes may be a widespread problem throughout the region. Copper contamination from smelting activities also provides cause for concern as elevated levels were found in aqueous extracts of soil up to 20 km away from a smelter. This study went beyond traditional chemical analysis by assessing the potential benefits of using microbial biosensors as an alternative to determination of chemical speciation, to provide an environmentally relevant interpretation of soil/sediment residue levels. This approach is simple to use and enables a rapid, low cost assessment of pollutant bioavailability. It may, therefore, be of use for further investigations in the region and beyond.
Resumo:
The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I) observational gene expression data: normal environmental condition, (II) interventional gene expression data: growth in rich media, (III) interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.
Resumo:
One of the most cost effective methods of pollution remediation is through natural attenuation where the resident microorganisms are responsible for the breakdown of pollutants (Dou et al. 2008). Other forms of bioremediation - such as analogue enrichment, composting and bio-venting - also use the microbes already present in a contaminated site to enhance the remediation process. In order for these approaches to be successful, in an industrial setting, some form of monitoring needs to take place enabling conclusions to be drawn about the degradation processes occurring. In this review we look at some key molecular biology techniques that have the potential to act as a monitoring tool for industries dealing with contaminated land.