16 resultados para entry-barrier effects
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Using patch-clamp and calcium imaging techniques, we characterized the effects of ATP and histamine on human keratinocytes. In the HaCaT cell line, both receptor agonists induced a transient elevation of [Ca2+]i in a Ca2+-free medium followed by a secondary [Ca2+]i rise upon Ca2+ readmission due to store-operated calcium entry (SOCE). In voltage-clamped cells, agonists activated two kinetically distinct currents, which showed differing voltage dependences and were identified as Ca2+-activated (ICl(Ca)) and volume-regulated (ICl, swell) chloride currents. NPPB and DIDS more efficiently inhibited ICl(Ca) and ICl, swell, respectively. Cell swelling caused by hypotonic solution invariably activated ICl, swell while regulatory volume decrease occurred in intact cells, as was found in flow cytometry experiments. The PLC inhibitor U-73122 blocked both agonist- and cell swelling–induced ICl, swell, while its inactive analogue U-73343 had no effect. ICl(Ca) could be activated by cytoplasmic calcium increase due to thapsigargin (TG)-induced SOCE as well as by buffering [Ca2+]i in the pipette solution at 500 nM. In contrast, ICl, swell could be directly activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable DAG analogue, but neither by InsP3 infusion nor by the cytoplasmic calcium increase. PKC also had no role in its regulation. Agonists, OAG, and cell swelling induced ICl, swell in a nonadditive manner, suggesting their convergence on a common pathway. ICl, swell and ICl(Ca) showed only a limited overlap (i.e., simultaneous activation), although various maneuvers were able to induce these currents sequentially in the same cell. TG-induced SOCE strongly potentiated ICl(Ca), but abolished ICl, swell, thereby providing a clue for this paradox. Thus, we have established for the first time using a keratinocyte model that ICl, swell can be physiologically activated under isotonic conditions by receptors coupled to the phosphoinositide pathway. These results also suggest a novel function for SOCE, which can operate as a "selection" switch between closely localized channels.
Resumo:
BACKGROUND: Hypertension and cognitive impairment are prevalent in older people. It is known that hypertension is a direct risk factor for vascular dementia and recent studies have suggested hypertension also impacts upon prevalence of Alzheimer's disease. The question is therefore whether treatment of hypertension lowers the rate of cognitive decline. OBJECTIVES: To assess the effects of blood pressure lowering treatments for the prevention of dementia and cognitive decline in patients with hypertension but no history of cerebrovascular disease. SEARCH STRATEGY: The trials were identified through a search of CDCIG's Specialised Register, CENTRAL, MEDLINE, EMBASE, PsycINFO and CINAHL on 27 April 2005. SELECTION CRITERIA: Randomized, double-blind, placebo controlled trials in which pharmacological or non-pharmacological interventions to lower blood pressure were given for at least six months. DATA COLLECTION AND ANALYSIS: Two independent reviewers assessed trial quality and extracted data. The following outcomes were assessed: incidence of dementia, cognitive change from baseline, blood pressure level, incidence and severity of side effects and quality of life. MAIN RESULTS: Three trials including 12,091 hypertensive subjects were identified. Average age was 72.8 years. Participants were recruited from industrialised countries. Mean blood pressure at entry across the studies was 170/84 mmHg. All trials instituted a stepped care approach to hypertension treatment, starting with a calcium-channel blocker, a diuretic or an angiotensin receptor blocker. The combined result of the three trials reporting incidence of dementia indicated no significant difference between treatment and placebo (Odds Ratio (OR) = 0.89, 95% CI 0.69, 1.16). Blood pressure reduction resulted in a 11% relative risk reduction of dementia in patients with no prior cerebrovascular disease but this effect was not statistically significant (p = 0.38) and there was considerable heterogeneity between the trials. The combined results from the two trials reporting change in Mini Mental State Examination (MMSE) did not indicate a benefit from treatment (Weighted Mean Difference (WMD) = 0.10, 95% CI -0.03, 0.23). Both systolic and diastolic blood pressure levels were reduced significantly in the two trials assessing this outcome (WMD = -7.53, 95% CI -8.28, -6.77 for systolic blood pressure, WMD = -3.87, 95% CI -4.25, -3.50 for diastolic blood pressure).Two trials reported adverse effects requiring discontinuation of treatment and the combined results indicated a significant benefit from placebo (OR = 1.18, 95% CI 1.06, 1.30). When analysed separately, however, more patients on placebo in SCOPE were likely to discontinue treatment due to side effects; the converse was true in SHEP 1991. Quality of life data could not be analysed in the three studies. There was difficulty with the control group in this review as many of the control subjects received antihypertensive treatment because their blood pressures exceeded pre-set values. In most cases the study became a comparison between the study drug against a usual antihypertensive regimen. AUTHORS' CONCLUSIONS: There was no convincing evidence from the trials identified that blood pressure lowering prevents the development of dementia or cognitive impairment in hypertensive patients with no apparent prior cerebrovascular disease. There were significant problems identified with analysing the data, however, due to the number of patients lost to follow-up and the number of placebo patients given active treatment. This introduced bias. More robust results may be obtained by analysing one year data to reduce differential drop-out or by conducting a meta-analysis using individual patient data.
Resumo:
Recent evidence indicates that the anti-angiogenic peptide endostatin may modulate some of the vasomodulatory effects of vascular endothelial growth factor (VEGF) in the retina, including reduction of blood retinal barrier function although it remains uncertain how endostatin promotes endothelial barrier properties. The current study has sought to examine how physiological levels of endostatin alters VEGF-induced inner BRB function using an in vitro model system and evaluation of occludin and ZO-1 regulatory responses. In addition, the ability of exogenous endostatin to regulate VEGF-mediated retinal vascular permeability in vivo was investigated.
Retinal microvascular endothelial cells (RMEC's) were exposed to various concentrations of endostatin. In parallel studies, RMEC monolayers were treated with vascular endothelial growth factor (VEGF165). Vasopermeability of RMEC monolayers and occludin expression were determined.
Blood retinal barrier integrity was quantified in mouse retina using Evans Blue assay following intravitreal delivery of VEGF165, endostatin or a VEGF/endostatin combination.
Endostatin increased the levels of expression of occludin whilst causing no significant change in FITC-dextran flux across the RMEC monolayer. Endostatin reversed the effects of VEGF165-enhanced permeability between microvascular endothelial cells and induced phosphorylation of occludin. Evans Blue leakage from retinas treated with VEGF was 2.0 fold higher than that of contra-lateral untreated eyes (P<0.05) while leakage of eyes from endostatin treated animals was unchanged. When eyes were injected with a combination of VEGF165 and endostatin there was a significant reduction in retinal vasopermeability when compared to VEGF-injected eyes (P<0.05).
We conclude that endostatin can promote integrity of the retinal endothelial barrier, possibly by preventing VEGF-mediated alteration of tight junction integrity. This suggests that endostatin may be of clinical benefit in ocular disorders where significant retinal vasopermeability changes are present.
Resumo:
Advanced glycation end products (AGEs) have been implicated in the progressive vascular dysfunction which occurs during diabetic retinopathy. In the current study we have examined the role of these adducts in blood-retinal barrier (BRB) breakdown and investigated expression of the vasopermeabilizing agent vascular endothelial growth factor (VEGF) in the retina. When normoglycemic rats were injected with AGE-modified albumin daily for up to 10 days there was widespread leakage of FITC-dextran and serum albumin from the retinal vasculature when compared to control animals treated with nonmodified albumin. Ultrastructural examination of the vasculature revealed areas of attenuation of the retinal vascular endothelium and increased vesicular organelles only in the AGE-exposed rats. Quantitative RT-PCR and in situ hybridization demonstrated a significant increase in retinal VEGF mRNA expression (P <0.05). These results suggest that AGEs can initiate BRB dysfunction in nondiabetic rats and a concomitant increase in retinal VEGF expression. These findings may have implications for the role of AGEs in the pathogenesis of diabetic retinopathy.
Resumo:
The issue of multiple proton transfer (PT) reactions in solution is addressed by performing molecular dynamics simulations for a formic acid dimer embedded in a water cluster. The reactant species is treated quantum mechanically, within a density functional approach, while the solvent is represented by a classical model. By constraining different distances within the dimer we analyze the PT process in a variety of situations representative of more complex environments. Free energy profiles are presented, and analyzed in terms of typical solvated configurations extracted from the simulations. A decrease in the PT barrier height upon solvation is rationalized in terms of a transition state which is more polarized than the stable states. The dynamics of the double PT process is studied in a low-barrier case and correlated with solvent polarization fluctuations. Cooperative effects in the motion of the two protons are observed in two different situations: when the solvent polarization does not favor the transfer of one of the two protons and when the motion of the two protons is not synchronized. This body of observations is correlated with local structural and dynamical properties of the solvent in the vicinity of the reactant. (C) 2000 American Institute of Physics. [S0021-9606(00)51121-0].
Resumo:
There is a limited amount of information about the effects of mineral precipitates and corrosion on the lifespan and long-term performance of in situ Fe° reactive barriers. The objectives of this paper are (1) to investigate mineral precipitates through an in situ permeable Fe° reactive barrier and (2) to examine the cementation and corrosion of Fe° filings in order to estimate the lifespan of this barrier. This field scale barrier (225' long x 2' wide x 31' deep) has been installed in order to remove uranium from contaminated groundwater at the Y-12 plant site, Oak Ridge, TN. According to XRD and SEM-EDX analysis of core samples recovered from the Fe° portion of the barrier, iron oxyhydroxides were found throughout, while aragonite, siderite, and FeS occurred predominantly in the shallow portion. Additionally, aragonite and FeS were present in up-gradient deeper zone where groundwater first enters the Fe° section of the barrier. After 15 months in the barrier, most of the Fe° filings in the core samples were loose, and a little corrosion of Fe° filings was observed in most of the barrier. However, larger amounts of corrosion (~10-150 µm thick corrosion rinds) occurred on cemented iron particles where groundwater first enters the barrier. Bicarbonate/ carbonate concentrations were high in this section of the barrier. Byproducts of this corrosion, iron oxyhydroxides, were the primary binding material in the cementation. Also, aragonite acted as a binding material to a lesser extent, while amorphous FeS occurred as coatings and infilings. Thin corrosion rinds (2-50 µm thick) were also found on the uncemented individual Fe° filings in the same area of the cementation. If corrosion continues, the estimated lifespan of Fe° filings in the more corroded sections is 5 to 10 years, while the Fe° filings in the rest of the barrier perhaps would last longer than 15 years. The mineral precipitates on the Fe° filing surfaces may hinder this corrosion but they may also decrease reactive surfaces. This research shows that precipitation will vary across a single reactive barrier and that greater corrosion and subsequent cementation of the filings may occur where groundwater first enters the Fe° section of the barrier.
Resumo:
Strategies available to evaluate the performance of in situ permeable reactive barriers are currently not well developed and often rely on fluid and media sampling directly from the permeable reactive barrier (PRB). Here, we investigate the utility of the self-potential (SP) method as a technique to monitor in situ PRB performance. Our field study was conducted at in situ biological PRB in Portadown, Northern Ireland, UK, which was emplaced to assist in the remediation of groundwater contamination (e.g., hydrocarbons, ammonia) that resulted from the operations and waste disposal practices of a former gasworks. Borehole SP measurements were collected during the injection of contaminant groundwater slugs in an attempt to monitor/detect the response of the microbial activity associated with the breakdown of the added contaminants into the PRB. In addition, an uncontaminated groundwater slug was injected into a different portion of the PRB as a ‘control’ and SP measurements were collected for comparison to the SP response of the contaminant slugs. The results of the SP signals due to the contaminant injections show that the magnitude of the response was relatively small (<10 mV) yet showed a consistent decrease during both contaminant injections. The net decrease in SP recorded during the contaminant injections slowly rebounded to near background values through ~44 hours post-injection. The SP response during the uncontaminated injection showed a slight, albeit negligible (within the margin of error), 1 mV increase in the measured SP signals, in contrast to the contaminant injections. The results of the SP signals recorded from the uncontaminated groundwater injection also persisted through a period of ~47 hours after injection but show a net increase in SP relative to pre-injection values. Based on the difference in SP response between the contaminated and uncontaminated injections, we suggest that the responses are likely to be the result of differences in the chemistry of the injection types (contaminated versus uncontaminated) and in situ groundwater. We argue that the SP signals associated with the contaminated injections are dominated by diffusion (electrochemical) potential, possibly enhanced by a microbial effect. While the results of our investigation show a consistent SP response associated with the contaminant injections that is dominated by diffusional effects, further studies are required in order to better understand the effect of microbial activity on SP signals and the potential utility for the SP method to detect/monitor changes that may be indicative of biological PRB performance.
Resumo:
Globally there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus FST was up to 0.53, and G’ST and Dest were even higher (maximum: 0.85 and 1.00 respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. Colletes floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.
Resumo:
Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.
Resumo:
Because unemployment benefit reforms tend to package together changes to job search requirements, monitoring and assistance, few existing studies have been able to empirically isolate the effects of job search monitoring intensity on the behaviour of unemployment benefit claimants. This paper exploits periods where monitoring has been temporarily withdrawn during a series of Benefit Office refurbishments - with the regime otherwise unchanged - to allow such identification. During these periods of zero monitoring the hazard rates for exits from claimant unemployment and for job entry both fall. © 2008 Elsevier B.V. All rights reserved.
Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy?
Resumo:
Aims/hypothesis: Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown.
Methods: In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavilyoxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate
experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL.
Results: ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures.
Conclusions/interpretation: In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.
Resumo:
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.
Resumo:
BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.
METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.
CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
Resumo:
RATIONALE: Cigarette smoke exposure is associated with an increased risk of the acute respiratory distress syndrome (ARDS); however, the mechanisms underlying this relationship remain largely unknown.
OBJECTIVE: To assess pathways of lung injury and inflammation in smokers and non-smokers with and without lipopolysaccharide (LPS) inhalation using established biomarkers.
METHODS: We measured plasma and bronchoalveolar lavage (BAL) biomarkers of inflammation and lung injury in smokers and non-smokers in two distinct cohorts of healthy volunteers, one unstimulated (n=20) and one undergoing 50 μg LPS inhalation (n=30).
MEASUREMENTS AND MAIN RESULTS: After LPS inhalation, cigarette smokers had increased alveolar-capillary membrane permeability as measured by BAL total protein, compared with non-smokers (median 274 vs 208 μg/mL, p=0.04). Smokers had exaggerated inflammation compared with non-smokers, with increased BAL interleukin-1β (p=0.002), neutrophils (p=0.02), plasma interleukin-8 (p=0.003), and plasma matrix metalloproteinase-8 (p=0.006). Alveolar epithelial injury after LPS was more severe in smokers than non-smokers, with increased plasma (p=0.04) and decreased BAL (p=0.02) surfactant protein D. Finally, smokers had decreased BAL vascular endothelial growth factor (VEGF) (p<0.0001) with increased soluble VEGF receptor-1 (p=0.0001).
CONCLUSIONS: Cigarette smoke exposure may predispose to ARDS through an abnormal response to a 'second hit,' with increased alveolar-capillary membrane permeability, exaggerated inflammation, increased epithelial injury and endothelial dysfunction. LPS inhalation may serve as a useful experimental model for evaluation of the acute pulmonary effects of existing and new tobacco products.