58 resultados para ensemble empirical mode decomposition with canonical correlation analysis-independent component analysis (EEMD-ICA)
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Biosignal measurement and processing is increasingly being deployed in ambulatory situations particularly in connected health applications. Such an environment dramatically increases the likelihood of artifacts which can occlude features of interest and reduce the quality of information available in the signal. If multichannel recordings are available for a given signal source, then there are currently a considerable range of methods which can suppress or in some cases remove the distorting effect of such artifacts. There are, however, considerably fewer techniques available if only a single-channel measurement is available and yet single-channel measurements are important where minimal instrumentation complexity is required. This paper describes a novel artifact removal technique for use in such a context. The technique known as ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA) is capable of operating on single-channel measurements. The EEMD technique is first used to decompose the single-channel signal into a multidimensional signal. The CCA technique is then employed to isolate the artifact components from the underlying signal using second-order statistics. The new technique is tested against the currently available wavelet denoising and EEMD-ICA techniques using both electroencephalography and functional near-infrared spectroscopy data and is shown to produce significantly improved results. © 1964-2012 IEEE.
Resumo:
This paper introduces two new techniques for determining nonlinear canonical correlation coefficients between two variable sets. A genetic strategy is incorporated to determine these coefficients. Compared to existing methods for nonlinear canonical correlation analysis (NLCCA), the benefits here are that the nonlinear mapping requires fewer parameters to be determined, consequently a more parsimonious NLCCA model can be established which is therefore simpler to interpret. A further contribution of the paper is the investigation of a variety of nonlinear deflation procedures for determining the subsequent nonlinear canonical coefficients. The benefits of the new approaches presented are demonstrated by application to an example from the literature and to recorded data from an industrial melter process. These studies show the advantages of the new NLCCA techniques presented and suggest that a nonlinear deflation procedure should be considered. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper introduces the application of linear multivariate statistical techniques, including partial least squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of Systems Biology. This new approach aims to extract the important proteins embedded in complex signal transduction pathway models.The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and activator of transcription factor 3 (STAT3).A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue of its construction.This analysis has a similar objective to conventional model reduction techniques with the advantage of maintaining the meaning of the states prior to and after the reduction process. A significant model reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining the main influencing factors on the STAT3 transcription.The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of several proteins to the production of Acute Phase Proteins and complement existing findings regarding cross-talk between the two signalling pathways.
Resumo:
Correlation analyses were conducted on nickel (Ni), vanadium (V) and zinc (Zn) oral bioaccessible fractions (BAFs) and selected geochemistry parameters to identify specific controls exerted over trace element bioaccessibility. BAFs were determined by previous research using the unified BARGE method. Total trace element concentrations and soil geochemical parameters were analysed as part of the Geological Survey of Northern Ireland Tellus Project. Correlation analysis included Ni, V and Zn BAFs against their total concentrations, pH, estimated soil organic carbon (SOC) and a further eight element oxides. BAF data were divided into three separate generic bedrock classifications of basalt, lithic arenite and mudstone prior to analysis, resulting in an increase in average correlation coefficients between BAFs and geochemical parameters. Sulphur trioxide and SOC, spatially correlated with upland peat soils, exhibited significant positive correlations with all BAFs in gastric and gastro-intestinal digestion phases, with such effects being strongest in the lithic arenite bedrock group. Significant negative relationships with bioaccessible Ni, V and Zn and their associated total concentrations were observed for the basalt group. Major element oxides were associated with reduced oral trace element bioaccessibility, with Al2O3 resulting in the highest number of significant negative correlations followed by Fe2O3. spatial mapping showed that metal oxides were present at reduced levels in peat soils. The findings illustrate how specific geology and soil geochemistry exert controls over trace element bioaccessibility, with soil chemical factors having a stronger influence on BAF results than relative geogenic abundance. In general, higher Ni, V and Zn bioaccessibility is expected in peat soil types.
Resumo:
The statistical properties of the multivariate GammaGamma (ΓΓ) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the su m of ΓΓ random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.
Resumo:
Purpose: A non-synonymous single nucleotide polymorphism ( SNP) in complement component 3 has been shown to increase the risk of age-related macular degeneration (AMD). We assess its effect on AMD risk in a Northern Irish sample, test for gene-gene and gene-environment interaction, and review a risk prediction model.
Resumo:
This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.
Resumo:
We probe the systematic uncertainties from the 113 Type Ia supernovae (SN Ia) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ∼0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037 ± 0.031 mag for host galaxies with high and low masses. Assuming flatness and including systematic uncertainties in our analysis of only SNe measurements, we find w = -1.120+0.360-0.206(Stat)+0.269-0.291(Sys). With additional constraints from Baryon acoustic oscillation, cosmic microwave background (CMB) (Planck) and H0 measurements, we find w = -1.166+0.072-0.069 and Ωm = 0.280+0.013-0.012 (statistical and systematic errors added in quadrature). The significance of the inconsistency with w = -1 depends on whether we use Planck or Wilkinson Microwave Anisotropy Probe measurements of the CMB: wBAO+H0+SN+WMAP = -1.124+0.083-0.065.
Resumo:
In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.