43 resultados para energy transfer efficiency
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Hydro-entanglement is a versatile process for bonding non-woven fabrics by the use of fine, closely-spaced, high-velocity jets of water to rearrange and entangle arrays of fibres. The cost of the process mainly depends on the amount of energy consumed. Therefore, the economy of the process is highly affected by optimisation of the energy required. In this paper a parameter called critical pressure is introduced which is indicative of the energy level requirement. The results of extensive experimental work are reported and analysed to give a clear understanding of the effect of the web and fibre properties on the critical pressure in the hydro-entanglement process. Furthermore, different energy-transfer distribution schemes are tested on various fabrics. The optimum scheme which involves the lowest energy consumption and the best fabric properties is identified. © 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Evidence has accumulated that radiation induces a transmissible persistent destabilization of the genome, which mag. result in effects arising in the progeny of irradiated but surviving cells. An enhanced death rate among the progeny of cells surviving irradiation persists for many generations in the form of a reduced plating efficiency. Such delayed reproductive death is correlated with an increased occurrence of micronuclei. Since it has been suggested that radiation-induced chromosomal instability might depend on the radiation quality, we investigated the effects of alpha particles of different LET by looking at the frequency of delayed micronuclei in Chinese hamster V79 cells after cytochalasin-induced block of cell division, A dose-dependent increase in the frequency of micronuclei was found in cells assayed 1 week postirradiation or later. Also, there was a persistent increase in the frequency of dicentrics in surviving irradiated cells, Moreover, we found an increased micronucleus frequency in all of the 30 clones isolated from individual cells which had been irradiated with doses equivalent to either one, two or three alpha-particle traversals per cell nucleus, We conclude that the target for genomic instability in Chinese hamster cells must be larger than the cell nucleus. (C) 1997 by Radiation Research Society
Resumo:
In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5' conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2 x 10(8) to 2 x 10(2) copies/mu l. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5' conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Research on fusion fast ignition (FI) initiated by laser-driven ion beams has made substantial progress in the last years. Compared with electrons, FI based on a beam of quasi-monoenergetic ions has the advantage of a more localized energy deposition, and stiffer particle transport, bringing the required total beam energy close to the theoretical minimum. Due to short pulse laser drive, the ion beam can easily deliver the 200 TW power required to ignite the compressed D-T fuel. In integrated calculations we recently simulated ion-based FI targets with high fusion gain targets and a proof of principle experiment [1]. These simulations identify three key requirements for the success of ion-driven fast ignition (IFI): (1) the generation of a sufficiently high-energetic ion beam (approximate to 400-500 MeV for C), with (2) less than 20% energy spread at (3) more than 10% conversion efficiency of laser to beam energy. Here we present for the first time new experimental results, demonstrating all three parameters in separate experiments. Using diamond nanotargets and ultrahigh contrast laser pulses we were able to demonstrate >500 MeV carbon ions, as well as carbon pulses with Delta E/E
Resumo:
We investigate the mechanisms for fluorescence enhancement and energy transfer near a gold tip in apertureless scanning near-field optical microscopy. Using a simple quasi-static model, we show that the observed enhancement of fluorescence results from competition between enhancement and quenching, and is dependent on a range of experimental parameters. We find good qualitative agreement with the results of measurements of the effect of both sharp and blunt tips on quantum dot fluorescence, and provide a demonstration of tip-enhanced fluorescence imaging with 60 nm resolution.
Resumo:
A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.
Resumo:
Previous work by ourselves and by others has demonstrated that protons with a linear energy transfer (LET) about 30 V mu m(-1) are more effective at killing cells than doubly charged particles of the same LET. In this work we show that by using deuterons, which have about twice the range of protons with the same LET, it is possible to extend measurements of the RBE of singly charged particles to higher LET (up to 50 keV mu m(-1)). We report the design and use of a new arrangement for irradiating V79 mammalian cells. Cell survival. measurements have been made using protons in the energy range 1.0-3.7 MeV, deuterons in the energy range 0.9-3.4 MeV and He-3(2+) ions in the energy range 3.4-6.9 MeV;. This corresponds to volume-averaged LET (within the cell nucleus) between 10 and 28 keV mu m(-1) for protons, 18-50 keV mu m(-1) for deuterons, and 59-106 keV mu m(-1) for helium ions. Our results show no difference in the effectiveness of protons and deuterons matched for LET. However, for LET above about 30 keV mu m(-1) singly charged particles are more effective at inactivating cells than doubly-charged particles of the same LET and that this difference can be understood in terms of the radial dose distribution around the primary ion track.
Resumo:
This paper analyzes the impact of transceiver impairments on outage probability (OP) and throughput of decode-and-forward two-way cognitive relay (TWCR) networks, where the relay is self-powered by harvesting energy from the transmitted signals. We consider two bidirectional relaying protocols namely, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, as well as, two power transfer policies namely, dual-source (DS) energy transfer and single-fixed-source (SFS) energy transfer. Closed-form expressions for OP and throughput of the network are derived in the context of delay-limited transmission. Numerical results corroborate our analysis, thereby we can quantify the degradation of OP and throughput of TWCR networks due to transceiver hardware impairments. Under the specific parameters, our results indicate that the MABC protocol achieves asymptotically a higher throughput by 0.65 [bits/s/Hz] than the TDBC protocol, while the DS energy transfer scheme offers better performance than the SFS policy for both relaying protocols.
Resumo:
There is increasing evidence of an interaction between cholesterol dynamics and Alzheimer's disease (AD), and amyloid ß-peptide may play an important role in this interaction. Aß destabilizes brain membranes and this action of Aß may be dependent on the amount of membrane cholesterol. We tested this hypothesis by examining effects of Aß1-40 on the annular fluidity (i.e., lipid environment adjacent to proteins) and bulk fluidity of rat synaptic plasma membranes (SPM) of the cerebral cortex, cerebellum, and hippocampus using the fluorescent probe pyrene and energy transfer. Amounts of cholesterol and phospholipid of SPM from each brain region were determined. SPM of the cerebellum were significantly more fluid as compared with SPM of the cerebral cortex and hippocampus. Aß significantly increased (P 0.01) annular and bulk fluidity in SPM of cerebral cortex and hippocampus. In contrast, Aß had no effect on annular fluidity and bulk fluidity of SPM of cerebellum. The amounts of cholesterol in SPM of cerebral cortex and hippocampus were significantly higher (P 0.05) than amount of cholesterol in SPM of cerebellum. There was significantly less (P 0.05) total phospholipid in cerebellar SPM as compared with SPM of cerebral cortex. Neuronal membranes enriched in cholesterol may promote accumulation of Aß by hydrophobic interaction, and such an interpretation is consistent with recent studies showing that soluble Aß can act as a seed for fibrillogenesis in the presence of cholesterol.
Resumo:
The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.