53 resultados para emission time scale
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We have conducted a series of radiocarbon measurements on decadal samples of dendrochronologically dated wood from both hemispheres, spanning 1000 years (McCormac et al. 1998; Hogg et al. this issue). Using the data presented in Hogg et al., we show that during the period AD 950-1850 the 14C offset between the hemispheres is not constant, but varies periodically (~130 yr periodicity) with amplitudes varying between 1 and 10‰ (i.e. 8-80 yr), with a consequent effect on the 14C calibration of material from the Southern Hemisphere. A large increase in the offset occurs between AD 1245 and 1355. In this paper, we present a Southern Hemisphere high-precision calibration data set (SHCal02) that comprises measurements from New Zealand, Chile, and South Africa. This data, and a new value of 41 ± 14 yr for correction of the IntCal98 data for the period outside the range given here, is proposed for use in calibrating Southern Hemisphere 14C dates.
Resumo:
Background: In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction.
Resumo:
We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ˜600 Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe. In the case of the Hyades, our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour-period relation, with identification of numerous rapid rotators from ˜0.5 Msun down to the lowest masses probed by our survey (˜0.25 Msun). This provides crucial constraints on the rotational braking time-scales and further clears the way to use gyrochronology as an accurate age measurement tool for main-sequence stars.
Resumo:
The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. While G-quartet stems have been well characterised, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 µs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.
Resumo:
We have observed extreme-ultraviolet (XUV) ''line-free'' continuum emission from laser plasmas of high atomic number elements using targets irradiated with 248 nm laser pulses of 7 ps duration at a power density of similar to 10(13) W/cm(2). Using both dispersive spectroscopy and streak camera detection, the spectral and temporal evolution of XUV continuum emission for several target atomic numbers has been measured on a time scale with an upper limit of several hundred picoseconds limited by amplified spontaneous emission. (C) 1997 American Institute of Physics.
Resumo:
Comparisons between experimentally measured time-dependent electron energy distribution functions and optical emission intensities are reported for low-frequency (100 and 400 kHz) radio-frequency driven discharges in argon. The electron energy distribution functions were measured with a time-resolved Langmuir probe system. Time-resolved optical emissions of argon resonance lines at 687.1 and 750.4 nm were determined by photon-counting methods. Known ground-state and metastable-state excitation cross sections were used along with the measured electron energy distribution functions to calculate the time dependence of the optical emission intensity. It was found that a calculation using only the ground-state cross sections gave the best agreement with the time dependence of the measured optical emission. Time-dependent electron density, electron temperature, and plasma potential measurements are also reported.
Resumo:
The reliable measurement of the electron energy distribution function (EEDF) of plasmas is one of the most important subjects of plasma diagnostics, because this piece of information is the key to understand basic discharge mechanisms. Specific problems arise in the case of RF-excited plasmas, since the properties of electrons are subject to changes on a nanosecond time scale and show pronounced spatial anisotropy. We report on a novel spectroscopic method for phase- and space-resolved measurements of the electron energy distribution function of energetic (> 12 eV) electrons in RF discharges. These electrons dominate excitation and ionization processes and are therefore of particular interest. The technique is based on time-dependent measurements during the RF cycle of excited-state populations of rare gases admixed in small fractions. These measurements yield � in combination with an analytical model � detailed information on the excitation processes. Phase-resolved optical emission spectroscopy allows us to overcome the difficulties connected with the very low densities (107�109 cm�3) and the transient character of the electrons in the sheath region. The EEDF of electrons accelerated in the sheath region can be described by a shifted Maxwellian with a drift velocity component in direction of the electric field. The method yields the high-energy tail of the EEDF on an absolute scale. The applicability of the method is demonstrated at a capacitively coupled RF discharge in hydrogen.
Resumo:
The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.
Resumo:
Changes of the electron dynamics during the mode transition (E- to H-mode) in a hydrogen radio-frequency (rf) inductively coupled plasma are investigated using space and phase resolved optical emission spectroscopy. The E- mode is characterized through relatively weak optical emission which is strongly modulated on a nanosecond time scale during the rf-cycle, with one pronounced maximum per cycle. The modulation in H-mode, with twice the rf-frequency, is significantly weaker while the emission intensities are about two orders of magnitude higher. In particular the transition between these two modes is studied under variations of rf-power input and gas pressure. Characteristic spatio-temporal structures are observed and can be understood in the frame of a simple model combining both coupling mechanisms in the transition regime.
Resumo:
Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.
Resumo:
[M2L3] coordination cages and linear [M2L3]infinity polymers of the rigid, bridging diphosphines bis(diphenylphosphino)acetylene (dppa) and trans-1,2-bis(diphenylphosphino)ethylene (dppet) with silver(I) salts have been investigated in the solution and solid states. Unlike flexible diphosphines, 1:1 dppa/AgX mixtures do not selectively form discrete [Ag2(diphos)2(X)2] macrocycles; instead dynamic mixtures of one-, two- and three-coordinate complexes are formed. However, 3:2 dppa/AgX ratios (X = SbF6. BF4, O3SCF3 or NO3) do lead selectively to new [M2L3] triply bridged cage complexes [Ag2(dppa)3(X)2] 1a-d (X = SbF6 a, BF4 b, O3SCF3 c, NO3 d), which do not exhibit Ag-P bond dissociation at room temperature on the NMR time scale (121 MHz). Complexes la-d were characterised by X-ray crystallography and were found to have small internal cavities, helical conformations and multiple intramolecular aromatic interactions. The nucleophilicity of the anion subtly influences the cage shape: Increasing nucleophilicity from SbF6 (1a) through BF4 (1b) and O3SCF3 (1c) to NO3 (1d) increases the pyramidal distortion at the AgP3 centres, stretching the cage framework (with Ag...Ag distances increasing from 5.48 in 1a to 6.21 A in 1d) and giving thinner internal cavities. Crystal packing strongly affected the size of the helical twist angle, and no correlation between this parameter and the Ag-Ag distance was observed. When crystalline 1c was stored in its supernatant for 16 weeks, conversion occured to the isostoichiometric [M2L3]infinity coordination polymer [Ag(dppa)2Ag(dppa)(O3SCF3)2]infinity (1c'). X-ray crystallography revealed a structure with ten-membered Ag2(dppa)2 rings linked into infinite one-dimensional chains by a third dppa unit. The clear structural relationship between this polymer and the precursor cage 1c suggests a novel example of ring-opening polymerisation. With dppet, evidence for discrete [M2L3] cages was also found in solution, although 31P NMR spectroscopy suggested some Ag-P bond dissociation. On crystallisation, only the corresponding ring-opened polymeric structures [M2L3]infinity could be obtained. This may be because the greater steric bulk of dppet versus dppa destabilises the cage and favours the ring-opening polymerisation.
Resumo:
The structure and dynamics of the ionic liquid 1-ethyl-3-methylimidazolium nitrate is studied by molecular dynamics simulations. We find long-range spatial correlations between the ions and a three-dimensional local structure that reflects the asymmetry of the cations. The main contribution to the configurational energy comes from the electrostatic interactions which leads to charge-ordering effects. Radial screening and threedimensional distribution of charge are also analyzed. The motion of a single ion is studied via velocity and reorientational correlation functions. It is found that ions "rattle" in a long-lived cage, while the orientational structure relaxes on a time scale longer than 200 ps. As in a supercooled liquid, the mean square displacements reveal a subdiffusive dynamics. In addition, the presence of dynamic heterogeneities can be detected by analyzing the non-Gaussian behavior of the van Hove correlation function and the spatial arrangement of the most mobile ions. The short-time collective dynamics is also studied through the electric current time correlation function.
Resumo:
The reactivity of the species formed at the surface of a Au/Ce(La)O2 catalyst during the water������¢���¯���¿���½���¯���¿���½gas shift (WGS) reaction were investigated by operando diffuse reflectance Fourier transform spectroscopy (DRIFTS) at the chemical steady state during isotopic transient kinetic analyses (SSITKA). The exchanges of the reaction product CO2 and of formate and carbonate surface species were followed during an isotopic exchange of the reactant CO using a DRIFTS cell as a single reactor. The DRIFTS cell was a modified commercial cell that yielded identical reaction rates to that measured over a quartz plug-flow reactor. The DRIFTS signal was used to quantify the relative oncentrations of the surface species and CO2. The analysis of the formate exchange curves between 428 and 493 K showed that at least two levels of reactivity were present. ������¢���¯���¿���½���¯���¿���½Slow formates������¢���¯���¿���½���¯���¿���½ displayed an exchange rate constant 10- to 20-fold slower than that of the reaction product CO2. ������¢���¯���¿���½���¯���¿���½Fast formates������¢���¯���¿���½���¯���¿���½ were exchanged on a time scale similar to that of CO2. Multiple nonreactive readsorption of CO2 took place, accounting for the kinetics of the exchange of CO2(g) and making it impossible to determine the number of active sites through the SSITKA technique. The concentration (in mol g������¢���¯���¿���½���¯���¿���½1) of formates on the catalyst was determined through a calibration curve and allowed calculation of the specific rate of formate decomposition. The rate of CO2 formation was more than an order of magnitude higher than the rate of decomposition of formates (slow + fast species), indicating that all of the formates detected by DRIFTS could not be the main reaction intermediates in the production of CO2. This work stresses the importance of full quantitative analyses (measuring both rate constants and adsorbate concentrations) when investigating the role of adsorbates as potential reaction intermediates, and illustrates how even reactive species seen by DRIFTS may be unimportant in the overall reaction scheme.
Resumo:
Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.