33 resultados para embodied energy analysis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen ions (H+, H-2(+) and H-3(+)) are produced in a magnetically confined inductively coupled radio frequency plasma. Ions are accelerated in the plasma boundary sheath potential, of several hundred volts, in front of a biased metal electrode immersed in the plasma. Backscattered hyperthermal hydrogen atoms are investigated by optical emission spectroscopy and an energy-resolved mass spectrometer. Ionisation of fast neutrals through electron stripping of atoms in the plasma allows energy analysis of the resulting ions. Thereby, the energy distribution function of the hyperthermal atoms can be deduced. The energy spectra can be explained as a superposition of individual spectra of the various ion species. The measured spectra also shows contributions of negative ions created at the electrode surface. In addition to experimental measurements, simulations of the neutral flux of backscattered atoms are carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with assessing the building’s the energy efficiency and qualities of a modular design for the education industry, in order assess the long economic benefits. The research includes a life-cycle energy and cost analysis of the school building design, predicting the impact on the operational cost of the building as a result of the addition of photovoltaic panels. The paper also includes a comparative study between the ECO Modular Solutions building, and a current standard prefabricated school building, quantifying the savings in CO2 emissions and savings in cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EU targets require nearly zero energy buildings (NZEB) by 2020. However few monitored examples exist of how NZEB has been achieved in practise in individual residential buildings. This paper provides an example of how a low-energy building (built in 2006), has achieved nearly zero energy heating through the addition of a solar domestic hot water and space heating system (“combi system”) with a Seasonal Thermal Energy Store (STES). The paper also presents a cumulative life cycle energy and cumulative life cycle carbon analysis for the installation based on the recorded DHW and space heating demand in addition to energy payback periods and net energy ratios. In addition, the carbon and energy analysis is carried out for four other heating system scenarios including hybrid solar thermal/PV systems in order to obtain the optimal system from a carbon efficiency perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper builds on and extends previous research to contribute to ongoing discussion on the use of resource and carbon accounting tools in regional policy making. The Northern Visions project has produced the first evidence-based footpath setting out the actions that need to be taken to achieve the step changes in the Ecological and Carbon Footprint of Northern Ireland. A range of policies and strategies were evaluated using the Resources and Energy Analysis Programme. The analysis provided the first regional evidence base that current sustainable development policy commitments would not lead to the necessary reductions in either the Ecological Footprint or carbon dioxide emissions. Building on previous applications of Ecological Footprint analysis in regional policy making, the research has demonstrated that there is a valuable role for Ecological and Carbon Footprint Analysis in policy appraisal. The use of Ecological and Carbon Footprint Analysis in regional policy making has been evaluated and recommendations made on ongoing methodological development. The authors hope that the research can provide insights for the ongoing use Ecological and Carbon Footprint Analysis in regional policy making and help set out the priorities for research to support this important policy area

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates the potential for the reuse of Belfast's existing Victorian terraced housing. The aim is to study methods behind retrofitting these unique pieces of architectural heritage, bringing them up to modern day standards with reduced energy costs and CO2 emissions in line with the Climate Change Act of 2008 (‘the Act’). It also highlights the characteristics of sustainable retrofitting examples and original prefabricated element, which enable the 19th-century properties to be re-adapted to suit modern day needs. The analysis builds on a report by Mark Hines Architects, in association with SAVE Britain's Heritage,1 in which the company explains the detrimental effect that the ‘Pathfinder’ scheme has had on English cities. Similarly, in Belfast, redevelopment schemes such as that in the ‘Village’ district have intended to replace undervalued terraced housing stock, and search for more sustainable options to retain these homes along with with the embodied energy and traditions attached to them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Building Information Modelling (BIM) is growing in pace, not only in design and construction stages, but also in the analysis of facilities throughout their life cycle. With this continued growth and utilisation of BIM processes, comes the possibility to adopt such procedures, to accurately measure the energy efficiency of buildings, to accurately estimate their energy usage. To this end, the aim of this research is to investigate if the introduction of BIM Energy Performance Assessment in the form of software analysis, provides accurate results, when compared with actual energy consumption recorded. Through selective sampling, three domestic case studies are scrutinised, with baseline figures taken from existing energy providers, the results scrutinised and compared with calculations provided from two separate BIM energy analysis software packages. Of the numerous software packages available, criterion sampling is used to select two of the most prominent platforms available on the market today. The two packages selected for scrutiny are Integrated Environmental Solutions - Virtual Environment (IES-VE) and Green Building Studio (GBS). The results indicate that IES-VE estimated the energy use in region of ±8% in two out of three case studies while GBS estimated usage approximately ±5%. The findings indicate that the introduction of BIM energy performance assessment, using proprietary software analysis, is a viable alternative to manual calculations of building energy use, mainly due to the accuracy and speed of assessing, even the most complex models. Given the surge in accurate and detailed BIM models and the importance placed on the continued monitoring and control of buildings energy use within today’s environmentally conscious society, this provides an alternative means by which to accurately assess a buildings energy usage, in a quick and cost effective manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electric vehicles (EV) are proposed as a measure to reduce greenhouse gas emissions in transport and support increased wind power penetration across modern power systems. Optimal benefits can only be achieved, if EVs are deployed effectively, so that the exhaust emissions are not substituted by additional emissions in the electricity sector, which can be implemented using Smart Grid controls. This research presents the results of an EV roll-out in the all island grid (AIG) in Ireland using the long term generation expansion planning model called the Wien Automatic System Planning IV (WASP-IV) tool to measure carbon dioxide emissions and changes in total energy. The model incorporates all generators and operational requirements while meeting environmental emissions, fuel availability and generator operational and maintenance constraints to optimize economic dispatch and unit commitment power dispatch. In the study three distinct scenarios are investigated base case, peak and off-peak charging to simulate the impacts of EV’s in the AIG up to 2025.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The manner in which 90? ferroelectric-ferroelastic domains respond to changes in temperature has been mapped in BaTiO3 single crystals using atomic force microscopy. Domain periodicity remains unaltered until approximately 2 ? C below the Curie temperature (TC ), whereupon domains coarsened dramatically. This behavior was successfully rationalized by considering the temperature dependence of the parameters associated with standard models of ferroelastic domain formation. However, while successful in describing the expected radical increase in equilibrium period with temperature, the model did not predict the unusual mechanism by which domain coarsening occurred; this was not continuous at a local level but instead involved discrete domain annihilation events. Subsequent insights from a combination of free energy analysis for the system and further experimental data from an analogous situation, in which domain period increases with increasing crystal thickness, suggested that domain annihilation is inevitable whenever a component of the relevant gradient that affects domain period is orientated parallel to the domain walls. Consistent with this thesis, we note that, for the observations presented herein, the thermal gradient possessed a significant component parallel to the domain walls. We suggest that domain annihilation is a general feature of domain structures in gradient fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.