2 resultados para embeddings

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we introduce an application of matrix factorization to produce corpus-derived, distributional
models of semantics that demonstrate cognitive plausibility. We find that word representations
learned by Non-Negative Sparse Embedding (NNSE), a variant of matrix factorization, are sparse,
effective, and highly interpretable. To the best of our knowledge, this is the first approach which
yields semantic representation of words satisfying these three desirable properties. Though extensive
experimental evaluations on multiple real-world tasks and datasets, we demonstrate the superiority
of semantic models learned by NNSE over other state-of-the-art baselines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While reading times are often used to measure working memory load, frequency effects (such as surprisal or n-gram frequencies) also have strong confounding effects on reading times. This work uses a naturalistic audio corpus with magnetoencephalographic (MEG) annotations to measure working memory load during sentence processing. Alpha oscillations in posterior regions of the brain have been found to correlate with working memory load in non-linguistic tasks (Jensen et al., 2002), and the present study extends these findings to working memory load caused by syntactic center embeddings. Moreover, this work finds that frequency effects in naturally-occurring stimuli do not significantly contribute to neural oscillations in any frequency band, which suggests that many modeling claims could be tested on this sort of data even without controlling for frequency effects.