67 resultados para elliptical human detection
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.
Resumo:
Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 µm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection to accurately confirm the presence of C. jejuni. Without pre-enrichment, this method was able to detect approximately 10 CFU of C. jejuni in 1 µl of spiked feces within 3 h.
Resumo:
We present a new wrapper feature selection algorithm for human detection. This algorithm is a hybrid featureselection approach combining the benefits of filter and wrapper methods. It allows the selection of an optimalfeature vector that well represents the shapes of the subjects in the images. In detail, the proposed featureselection algorithm adopts the k-fold subsampling and sequential backward elimination approach, while thestandard linear support vector machine (SVM) is used as the classifier for human detection. We apply theproposed algorithm to the publicly accessible INRIA and ETH pedestrian full image datasets with the PASCALVOC evaluation criteria. Compared to other state of the arts algorithms, our feature selection based approachcan improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy.Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach witharound 9% improvement in the detection accuracy
Resumo:
Microdialysis enables the chemistry of extracellular ?uid in body tissues to be measured. Extracellular proteases such as the cysteine protease, cathepsin S (CatS), are thought to facilitate astrocytoma invasion. Microdialysates obtained from human brain tumoursin vivo were subjected to cathepsin S activity and ELISA assays. Cathepsin S ELISA expression was detected in ?ve out of 10 tumour microdialysates, while activity was detected in ?ve out of 11 tumour microdialysates. Cathepsin S expression was also detected in microdialysate from the normal brain control although no activity was found in the same sample. While some re?nements to the technique are necessary, the authors demonstrate the feasibility and safety of microdialysis in human astrocytomasin vivo. Characterisation of the extracellular environment of brain tumoursin vivo using microdialysis may be a useful tool to identify the protease pro?le of brain tumours.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.
Resumo:
The joint fluids of 37 patients with rheumatoid arthritis, eight patients with traumatic injuries to their joints, two patients with Reiter's syndrome and three patients with psoriatic arthritis were tested for the presence of B cell colony stimulating activity (B cell CSA). B cell CSA was found in all of the joint fluids from the patients with rheumatoid arthritis but in none of the joint fluids from patients with traumatic injuries to their joints or in the joint fluids from the patients with Reiter's syndrome. A trace of B cell CSA was found in the joint fluid of one of the three patients with psoriatic arthritis. There was a positive correlation (r = 0.796) between the amount of rheumatoid factor present in the joint fluids and the titre of B cell CSA. This correlation was highly significant (P less than 0.001). The B cell CSA was localized to component(s) with molecular weight ranges 115-129 kD and 64-72 kD and an isoelectric point of 6.8. Its activity was sensitive to reduction with 2-mercaptoethanol and to the oxidising action of potassium periodate.
Resumo:
An outlier removal based data cleaning technique is proposed to
clean manually pre-segmented human skin data in colour images.
The 3-dimensional colour data is projected onto three 2-dimensional
planes, from which outliers are removed. The cleaned 2 dimensional
data projections are merged to yield a 3D clean RGB data. This data
is finally used to build a look up table and a single Gaussian classifier
for the purpose of human skin detection in colour images.
Resumo:
The measurement of neuropeptides in complex biological tissue samples requires efficient and appropriate extraction methods so that immunoreactivity is retained for subsequent radioimmunoassay detection. Since neuropeptides differ in their molecular mass, charge and hydrophobicity, no single method will suffice for the optimal extraction of various neuropeptides. In this study, dental pulp tissue was obtained from 30 human non-carious teeth. Of the three different neuropeptide extraction methods employed, boiling in acetic acid in the presence of protease inhibitors yielded the highest levels of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). High pressure liquid chromatography (HPLC) analysis of dental pulp tissue verified the authenticity of the neuropeptides extracted. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Human papillomavirus (HPV), the causal agent of cervical cancer, appears to be involved in the etiology of cancer of the oral cavity and oropharynx. To investigate these associations, we conducted a multicenter case-control study of cancer of the oral cavity and oropharynx in nine countries. Methods: We recruited 1670 case patients (1415 with cancer of the oral cavity and 255 with cancer of the oropharynx) and 1732 control subjects and obtained an interview, oral exfoliated cells, and blood from all participants and fresh biopsy specimens from case patients. HPV DNA was detected by polymerase chain reaction (PCR). Antibodies against HPV16 L1, E6, and E7 proteins in plasma were detected with enzyme-linked immunosorbent assays. Multivariable models were used for case-control and case-case comparisons. Results: HPV DNA was detected in biopsy specimens of 3.9% (95% confidence interval [CI]=2.5% to 5.3%) of 766 cancers of the oral cavity with valid PCR results and 18.3% (95% CI=12.0% to 24.7%) of 142 cancers of the oropharynx (oropharynx and tonsil combined) with valid PCR results. HPV DNA in cancer biopsy specimens was detected less frequently among tobacco smokers and paan chewers and more frequently among subjects who reported more than one sexual partner or who practiced oral sex. HPV16 DNA was found in 94.7% of HPV DNA-positive case patients. HPV DNA in exfoliated cells was not associated with cancer risk or with HPV DNA detection in biopsy specimens. Antibodies against HPV16 L1 were associated with risk for cancers of the oral cavity (odds ratio [OR]=1.5, 95% CI=1.1 to 2.1) and the oropharynx (OR=3.5, 95% CI=2.1 to 5.9). Antibodies against HPV16 E6 or E7 were also associated with risk for cancers of the oral cavity (OR=2.9, 95% CI=1.7 to 4.8) and the oropharynx (OR=9.2, 95% CI=4.8 to 17.7). Conclusions: HPV appears to play an etiologic role in many cancers of the oropharynx and possibly a small subgroup of cancers of the oral cavity. The most common HPV type in genital cancers (HPV16) was also the most common in these tumors. The mechanism of transmission of HPV to the oral cavity warrants further investigation.
Resumo:
The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52 ± 3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 g/100 g of shellfish meat.