137 resultados para electron probe data

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Langmuir probe has been used as a diagnostic of the temporally evolving electron component within a laser ablated Cu plasma expanding into vacuum, for an incident laser power density on target similar to that used for the pulsed laser deposition of thin films. Electron temperature data were obtained from the retarding region of the probe current/voltage (I/V) characteristic, which was also used to calculate an associated electron number density. Additionally, electron number density data were obtained from the saturation electron current region of the probe (I/V) characteristic. Electron number density data, extracted by the two different techniques, were observed to show the same temporal form, with measured absolute values agreeing to within a factor of 2. The Langmuir probe, in the saturation current region, has been shown for the first time to be a convenient diagnostic of the electron component within relatively low temperature laser ablated plasma plumes. (C) 1999 American Institute of Physics. [S0034-6748(99)01503-8].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. Considerable demand exists for electron excitation data for Ni ii, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims. In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact ex- citation of Ni ii. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of Ni ii. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30–100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date.Methods. The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model – 3d9 , 3d8 4s, 3d8 4p, 3d7 4s2 and 3d7 4s4p – giving rise to a sophisticated 295 j j-level, 1930 coupled channel scattering problem. Results. Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO(•) through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO(•) yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructure evolution of a 10Cr ferritic/martensitic heat-resistant steel during creep at 600°C was investigated in this work. Creep tests demonstrated that the 10Cr steel had higher creep strength than conventional ASME-P92 steel at 600°C. The microstructure after creep was studied by transmission electron microscopy, scanning electron microscopy and electron probe microanalysis. It was revealed that the martensitic laths were coarsened with time and eventually developed into subgrains after 8354 h. Laves phase was observed to grow and cluster along the prior austenite grain boundaries during creep and caused the fluctuation of solution and precipitation strengthening effects, which was responsible for the two slope changes on the creep rupture strength vs rupture time curve. It was also revealed that the microstructure evolution could be accelerated by stress, which resulted in the lower hardness in the deformed part of the creep specimen, compared with the aging part.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cryptotephra layer from the eruption of Hekla in 1947 has recently been discovered in Irish peatlands. This tephra layer represents the most recent deposition of volcanic ash in the UK prior to the eruption of Eyjafjallajökull in 2010. Here we examine the concentration and geochemistry of the Hekla 1947 tephra in 14 peat profiles from across Northern Ireland. Electron probe microanalysis of individual tephra shards (n?=?91) reveals that the tephra is of dacitic–andesitic geochemistry and is highly similar to the Hekla 1510 tephra, although spheroidal carbonaceous particle profiles can be used for successful discrimination of the two layers. The highest concentrations of Hekla 1947 are found in western sites, probably reflecting the pathway of the ash fall event due to the prevailing wind direction. Comparable tephra concentrations from two cores (1?km apart) from a single bog and from nearby sites may suggest that tephra shard concentrations in peat profiles reflect ash fallout densities across a specific region, rather than site-specific factors associated with peatlands. This paper firmly establishes Hekla 1947 as a useful chronostratigraphic marker for the twentieth century, although within a restricted zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron tunnelling spectroscopy, developed to extract superconductive metals the electron-phonon spectral density, $\alpha^2F(\nu)$, is found to be a powerful tool also for extracting a more realistic pseudopotential from such metals. The pseudopotential so extracted has a range of surprising but physically reasonable properties and regenerates $\alpha^2F(\nu)$ accurately. Free from most of its long-standing uncertainties, thie pseudopotential may be useful in a number of active fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number M_L=0 and M_L=1 at a laser wavelength of 390 nm and peak intensity of 10(14) W/cm(2). Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for M_L. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with M_L=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron energy-loss near-edge structure (ELNES) at the oxygen K-edge has been investigated in a range of yttria-stabilized zirconia (YSZ) materials. The electronic structure of the three polymorphs of pure ZrO2 and of the doped YSZ structure close to the 33 mol %Y2O3 composition have been calculated using a full-potential linear muffin-tin orbital method (NFP-LMTO) as well as a pseudopotential based technique. Calculations of the ELNES dipole transition matrix elements in the framework of the NFP-LMTO scheme and inclusion of core hole screening within Slater's transition state theory enable the ELNES to be computed. Good agreement between the experimental and calculated ELNES is obtained for pure monoclinic ZrO2. The agreement is less good with the ideal tetragonal and cubic structures. This is because the inclusion of defects is essential in the calculation of the YSZ ELNES. If the model used contains ordered defects such as vacancies and metal Y planes, agreement between the calculated and experimental O K-edges is significantly improved. The calculations show how the five different O environments of Zr,Y,O, are connected with the features observed in the experimental spectra and demonstrate clearly the power of using ELNES to probe the stabilization mechanism in doped metal oxides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint experimental and theoretical study of the transfer ionization process p+He→ H-0+He2++e(-) is presented for 630-keV proton impact energy, where the electron is detected in a plane perpendicular to the proton beam direction. With this choice of kinematics we find the triple-differential cross section to be particularly sensitive to angular correlation in the helium target. There is a good agreement between the experimental data and theoretical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energies for the lowest 49 levels among the 1s(2) and 1snl (n = 2-5) configurations of Ar XVII have been calculated using the GRASP code of Dyall et al. (1989, Comput. Phys. Comm., 55, 424). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Furthermore, collision strengths have also been calculated for all the 1176 transitions among the above 49 levels using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2005, Comput. Phys. Commun., in preparation), over a wide energy range up to 580 Ryd. Resonances have been resolved in the threshold region, and effective collision strengths have been obtained over a wide temperature range up to log T-e = 7.2 K. Comparisons are made with the limited results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 0.1%, whereas results for other parameters are probably accurate to better than 20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like O VI have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 63 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.