2 resultados para dynamic scenes
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
One of the most widely used techniques in computer vision for foreground detection is to model each background pixel as a Mixture of Gaussians (MoG). While this is effective for a static camera with a fixed or a slowly varying background, it fails to handle any fast, dynamic movement in the background. In this paper, we propose a generalised framework, called region-based MoG (RMoG), that takes into consideration neighbouring pixels while generating the model of the observed scene. The model equations are derived from Expectation Maximisation theory for batch mode, and stochastic approximation is used for online mode updates. We evaluate our region-based approach against ten sequences containing dynamic backgrounds, and show that the region-based approach provides a performance improvement over the traditional single pixel MoG. For feature and region sizes that are equal, the effect of increasing the learning rate is to reduce both true and false positives. Comparison with four state-of-the art approaches shows that RMoG outperforms the others in reducing false positives whilst still maintaining reasonable foreground definition. Lastly, using the ChangeDetection (CDNet 2014) benchmark, we evaluated RMoG against numerous surveillance scenes and found it to amongst the leading performers for dynamic background scenes, whilst providing comparable performance for other commonly occurring surveillance scenes.
Resumo:
In this paper, we introduce an efficient method for particle selection in tracking objects in complex scenes. Firstly, we improve the proposal distribution function of the tracking algorithm, including current observation, reducing the cost of evaluating particles with a very low likelihood. In addition, we use a partitioned sampling approach to decompose the dynamic state in several stages. It enables to deal with high-dimensional states without an excessive computational cost. To represent the color distribution, the appearance of the tracked object is modelled by sampled pixels. Based on this representation, the probability of any observation is estimated using non-parametric techniques in color space. As a result, we obtain a Probability color Density Image (PDI) where each pixel points its membership to the target color model. In this way, the evaluation of all particles is accelerated by computing the likelihood p(z|x) using the Integral Image of the PDI.