9 resultados para drying process

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissolving polymeric microneedle arrays and hydrogel-forming microneedle arrays have attracted much attention during recent years due mainly to their biocompatibility and capacity for enhanced drug delivery. Nevertheless, for the production of this type of devices, typically, a drying step is required. Microneedles are prepared following a micromoulding technique using aqueous blends of Gantrez® S-97. Currently, production of microneedles arrays involves a long drying process of 48 hours. Therefore alternative drying methods were investigated including microwave radiation and hot air convection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives of this study were to develop a three-dimensional acellular cartilage matrix (ACM) and investigate its possibility for use as a scaffold in cartilage tissue engineering. Bovine articular cartilage was decellularized sequentially with trypsin, nuclease solution, hypotonic buffer, and Triton x 100 solution; molded with freeze-drying process; and cross-linked by ultraviolet irradiation. Histological and biochemical analysis showed that the ACM was devoid of cells and still maintained the collagen and glycosaminoglycan components of cartilage. Scanning electronic microscopy and mercury intrusion porosimetry showed that the ACM had a sponge-like structure of high porosity. The ACM scaffold had good biocompatibility with cultured rabbit bone marrow mesenchymal stem cells with no indication of cytotoxicity both in contact and in extraction assays. The cartilage defects repair in rabbit knees with the mesenchymal stem cell-ACM constructs had a significant improvement of histological scores when compared to the control groups at 6 and 12 weeks. In summary, the ACM possessed the characteristics that afford it as a potential scaffold for cartilage tissue engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spray-dried formulations offer an attractive delivery system for administration of drug encapsulated into liposomes to the lung, but can suffer from low encapsulation efficiency and poor aerodynamic properties. In this paper the effect of the concentration of the anti-adherent l-leucine was investigated in tandem with the protectants sucrose and trehalose. Two manufacturing methods were compared in terms of their ability to offer small liposomal size, low polydispersity and high encapsulation of the drug indometacin. Unexpectedly sucrose offered the best protection to the liposomes during the spray drying process, although formulations containing trehalose formed products with the best powder characteristics for pulmonary delivery; high glass transition values, fine powder fraction and yield. It was also found that l-leucine contributed positively to the characteristics of the powders, but that it should be used with care as above the optimum concentration of 0.5% (w/w) the size and polydispersity index increased significantly for both disaccharide formulations. The method of liposome preparation had no effect on the stability or encapsulation efficiency of spray-dried powders containing optimal protectant and anti-adherent. Using l-leucine at concentrations higher than the optimum level caused instability in the reconstituted liposomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To formulate therapeutic proteins into polymeric devices the protein is typically in the solid state, which can be achieved by the process of freeze-drying. However, freeze-drying not only risks denaturing the protein but it can adversely affect the cure characteristics of protein-loaded silicone elastomers. This study demonstrates that a variation in the parameters of the freeze-dryer can significantly affect the residual moisture content of freeze-dried BSA, which in turn has an effect on the bulk density and flow properties of the BSA. The bulk density and flow properties of the BSA subsequently affect the cure characteristics of BSA-loaded silicone elastomers. An increase in the residual moisture content results in the freeze-dried BSA having a decreased bulk density and poor flow properties which can have a detrimental effect on the cure characteristics of a freeze-dried BSA-loaded silicone elastomer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources.