7 resultados para droughts and floods

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the “The Great North American Drought of 1988”. Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prediction of the impact of suspended sediment on aquatic ecosystems requires adequate knowledge of sediment dynamics in surface waters. Often, studies reporting the response of aquatic biota to suspended sediment are concerned with concentrations, while catchment erosion studies often report sediment delivery as annual loads and yields, making the comparison to documented ecological impacts difficult. Similarly, the European Union Freshwater Fish Directive (FFD) (78/659/EC) stipulates a guideline value of 25mgl which should not be exceeded, with the exception of floods and droughts. In this respect, the significance of suspended sediment in two Irish rivers was assessed using turbidity sensors calibrated for suspended sediment. Sediment yields of 0.07 tonnes (t) hayear and 0.44thayear and annual FFD exceedance frequency of 8.3% and 17.8% were estimated for the two catchments. Contrasts in the frequency of exceedance events between both catchments was observed, yet duration was typically short (

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a consequence of increased levels of flooding, largely attributable to urbanization of watersheds (and perhaps climate change, more frequent extreme rainfall events are occurring and threatening existing critical infrastructure. Many of which are short-span bridges over relatively small waterways (e.g., small rivers, streams and canals). Whilst these short-span bridges were designed, often many years ago, to pass relatively minor the then standard return-period floods, in recenttimes the failure incidence of such short-span bridges has been noticeably increasing. This is suggestive of insufficient hydraulic capacity or alternative failure mechanism not envisaged at the time of design e.g. foundation scour or undermining. This paper presen ts, and draws lessons, from bridge failures in Ireland and the USA. For example, in November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The resulting flooding led to the collapse of three UK bridges that were generally 19th century masonry arch bridges, withrelatively shallow foundations. Parallel failure events have been observed in the USA. To date, knowledge of the combined effect of waterway erosion, bridge submergence, and geotechnical collapse has not been adequately studied. Recent research carried out considered the hydraulic analysis of short span bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to erosive coupling of hydraulic and geotechnical factors. Some work has been done to predict the discharge downstream of an inundated arch, focusing onpredicting afflux, as opposed to bridge scour, under both pressurized and free-surface flows, but no ! predictive equation for scour under pressurized conditions was ever considered. The case studies this paper presents will be augmented by the initial findings from the laboratory experiments investigating the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of consequent scour, for a series of flows and model spans. The data will be presented and correlated to the most recent predictive equations for submerged contraction and abutment scour. The accuracy of these equations is examined, and the findings used as a basis for developing further studies in relation to short span bridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earlier palynological studies of lake sediments from Easter Island suggest that the island underwent a recent and abrupt replacement of palm-dominated forests by grasslands, interpreted as a deforestation by indigenous people. However, the available evidence is inconclusive due to the existence of extended hiatuses and ambiguous chronological frameworks in most of the sedimentary sequences studied. This has given rise to an ongoing debate about the timing and causes of the assumed ecological degradation and cultural breakdown. Our multiproxy study of a core recovered from Lake Raraku highlights the vegetation dynamics and environmental shifts in the catchment and its surroundings during the late Holocene. The sequence contains shorter hiatuses than in previously recovered cores and provides a more continuous history of environmental changes. The results show a long, gradual and stepped landscape shift from palm-dominated forests to grasslands. This change started c. 450 BC and lasted about two thousand years. The presence of Verbena litoralis, a common weed, which is associated with human activities in the pollen record, the significant correlation between shifts in charcoal influx, and the dominant pollen types suggest human disturbance of the vegetation. Therefore, human settlement on the island occurred c. 450 BC, some 1500 years earlier than is assumed. Climate variability also exerted a major influence on environmental changes. Two sedimentary gaps in the record are interpreted as periods of droughts that could have prevented peat growth and favoured its erosion during the Medieval Climate Anomaly and the Little Ice Age, respectively. At c. AD 1200, the water table rose and the former Raraku mire turned into a shallow lake, suggesting higher precipitation/evaporation rates coeval with a cooler and wetter Pan-Pacific AD 1300 event. Pollen and diatom records show large vegetation changes due to human activities c. AD 1200. Other recent vegetation changes also due to human activities entail the introduction of taxa (e.g. Psidium guajava, Eucalyptus sp.) and the disappearance of indigenous plants such as Sophora toromiro during the two last centuries. Although the evidence is not conclusive, the American origin of V. litoralis re-opens the debate about the possible role of Amerindians in the human colonisation of Easter Island.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate model projections suggestwidespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other “Old World” climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the “Old World Drought Atlas” (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era.
The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries
reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.