71 resultados para donor-centred
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper is drawn from a qualitative study of clients, counsellors and the supervisors views of the value and impact of the Independent Youth Counselling Service (IYCS) in West Belfast. Data collection combined semi-structured interviews, focus groups and an open-ended questionnaire. The findings indicate the significance of factors above and beyond the person-centred counselling experience, in maximising the potential for growth and development for clients and counsellors. This holistic approach to counselling service provision employs a body of community development processes, which collectively combine to embed the counselling service in a complementary principled approach. This paper explores how these community development features bolster the counselling experience to promote a culture of person-centeredness, thereby increasing the empowerment of the client.
Resumo:
This paper describes a method for working with chldren who are the subjects of care planning and review under the Children Act 1989. The person centred planning model, as it is termed, has been well established in working with adults with special needs but can be extrapolated to encounters with children. It focuses on three fundamental areas: relationship, meaning and narrative. In underscoring these areas, the method restrains the bureaucracy and experience of stigma that is often present for those residing in State care.
Resumo:
In chloroform, [RuCl2(nbd)(py)(2)] (1) (nbd = norbornadiene; py = pyridine) reacts with 1,4-bis(diphenylphosphino)-1,2,3,4-tetramethyl-1,3-butadiene (1,2,3,4-Me-4-NUPHOS) to give the dimer [Ru2Cl3(eta(4)-1,2,3,4-Me-4-NUPHOS)(2)]Cl (2a), whereas, in THF [RuCl2(1,2,3,4-Me-4-NUPHOS)(PY)(2)] (3) is isolated as the sole product of reaction. Compound 2 exists as a 4:1 mixture of two noninterconverting isomers, the major with C, symmetry and the minor with either C, or C-2 symmetry. A single-crystal X-ray analysis of [Ru2Cl3 (eta(4)-1,2,3,4-Me-4-NUPHOS)(2)] [SbF6] (2b), the hexafluoroantimonate salt of 2a, revealed that the diphosphine coordinates in an unusual manner, as a eta(4)-six-electron donor, bonded through both P atoms and one of the double bonds of the butadiene tether. Compounds 2a and 3 react with 1,2-ethylenediamine (en) in THF to afford [RuCl2(1,2,3,4-Me-4-NUPHOS)(en)] (4), which rapidly dissociates a chloride ligand in chloroform to give [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)] [Cl] (5a). Complexes 4 and 5a cleanly and quantitatively interconvert in a solvent-dependent equilibrium, and in THF 5a readily adds chloride to displace the eta(2)-interaction and re-form 4. A single-crystal X-ray structure determination of [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)][ClO4] (5b) confirmed that the diphosphine coordinates in an eta(4)-manner as a facial six-electron donor with the eta(2)-coordinated double bond occupying the site trans to chloride. The eta(4)-bonding mode can be readily identified by the unusually high-field chemical shift associated with the phosphorus atom adjacent to the eta(2)-coordinated double bond. Complexes 2a, 2b, 4, and 5a form catalysts that are active for transfer hydrogenation of a range of ketones. In all cases, catalysts formed from precursors 2a and 2b are markedly more active than those formed from 4 and 5a.
Resumo:
A long-standing and unverified prediction of binary star evolution theory is the existence of a population of white dwarfs accreting from substellar donor stars. Such systems ought to be common, but the difficulty of finding them, combined with the challenge of detecting the donor against the light from accretion, means that no donor star to date has a measured mass below the hydrogen burning limit. We applied a technique that allowed us to reliably measure the mass of the unseen donor star in eclipsing systems. We were able to identify a brown dwarf donor star, with a mass of 0.052 ± 0.002 solar mass. The relatively high mass of the donor star for its orbital period suggests that current evolutionary models may underestimate the radii of brown dwarfs.
Resumo:
As with gold, relativistic effects are important in the chemistry of mercury Together with the closed-shell d(10) configuration of Hg2+ they account for the special bonding schemes as preferred linear coordination with highly covalent contributions to chemical bonding or special affinities to nitrogen and sulfur that are so prominent in mercuric chemistry This research report summarizes recent research on coordination compounds with halogen, oxygen and, especially, nitrogen as direct bonding partners of di-valent mercury and their competition with each other. In a rather systematic way N-donor ligands with one, two and more than two nitrogen atoms have been inspected in order to elucidate the influences that lead to the special bonding schemes of Hg-II-N compounds.
Resumo:
Colourless single crystals of [Hg-2(Pym)](NO3)(2), [Hg-2(Pym)](ClO4)(2) and [Hg-2(Pyp)(2)](ClO4)(2) were obtained from aqueous solutions of the respective components Hg-2(NO3)(2).2H(2)O, Hg-2(ClO4)(2).6H(2)O, pyrimidine (Pym) and pyrazine (Pyp). The crystal structures were determined from single-crystal X-ray diffractometer data. [Hg-2(Pym)](NO3)(2): monoclinic, C2/c, Z = 8, a = 1607.4(2), b = 652.79(7), c = 2000.5(2) pm, beta = 103.42(2)degrees, R-all = 0.0530; [Hg-2(Pym)](ClO4)(2): orthorhombic, Pnma, Z = 4, a = 1182.7(2), b = 1662.5(2), c = 607.9(1) pm, R-all = 0.0438; [Hg-2(Pyp)(2)](ClO4)(2): orthorhombic, Aba2, Z = 4, a = 1529.39(9), b = 1047.10(14), c = 1133.49(15) pm, R-all = 0.0381. The crystal structures of [Hg-2(Pym)](NO3)(2) and [Hg-2(Pym)](ClO4)(2) contain polymeric cationic chains [Hg-2(Pym)](+) that are arranged to corrugated layers between which the anions are situated. [Hg-2(Pyp)(2)](ClO4)(2) consists of polymeric cationic layers that are built from (Hg-2)(2)(Hg-2)(2/2)(Pyp)(4) rings connected to each other; the perchlorate tetrahedra are located between these layers.
Resumo:
Background. The success of transplantation is hampered by rejection of the graft by alloreactive T cells. Donor dendritic cells (DC) have been shown to be required for direct priming of immune responses to antigens from major histocompatibility complex-mismatched grafts. However, for immune responses to major histocompatibility complex-matched, minor histocompatibility (H) antigen mismatched grafts, the magnitude of the T-cell response to directly presented antigens is reduced, and the indirect pathway is more important. Therefore, we aimed to investigate the requirement for donor DC to directly present antigen from minor H antigen mismatched skin and hematopoietic grafts.