5 resultados para dioxin

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forest ecosystem was contaminated as a result of a fire involving 600 t of PVC. A wide range of 2,3,7,8-substituted dioxin and furan congeners were elevated (by up to 4-fold) on soil adjacent to the factory compared to a site 200 m from the factory perimeter. Livers of wood mice (Apodemus sylvaticus) caught on these areas were also analysed for dioxins and furans. Toxic equivalents (TEQs) were 9-fold higher in wood mice caught on the site 10 m from the factory perimeter compared with the site 200 m from the perimeter, with individual 2,3,7,8-substituted congeners being elevated by up to 30-fold. Wood mouse liver TEQs were found to be highly correlated with cadmium kidney concentrations, cadmium also being found at elevated concentrations at the accident site. There was also a significant positive correlation between wood mouse liver TEQs and relative liver weights (wet weights expressed as a percentage of total body weight). The results of this study are discussed in the wider context of dioxin contamination in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discrepancies in environmental budgets of dioxin-like compounds may be explained by emissions from accidents involving chlorinated organic chemicals. This source may have important implications for regulation inventories. © 1995 Nature Publishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.