8 resultados para diffraction efficiency spectrum

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We made numerical simulations of the generation of narrowband beams of extreme ultraviolet radiation from intense laser interaction with a blazed grating surface. Strong fifth harmonic emission into its blazed diffraction order was observed as well as heavy suppression of the fundamental frequency with comparison to a typical harmonic spectrum from a flat target. The results demonstrate a new highly efficient method of generating near-monochromatic harmonics from the fundamental with minimal effect on the pulse duration. (C) 2011 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic semiconductors have already found commercial applications in for example displays with organic light-emitting diodes (OLEDs) and great advances are also being made in other areas, such as organic field-effect transistors and organic solar cells. [1] The organic semicondutor group of materials known as metal phthalocyanines (MPc’s) is interesting for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPc’s. [1, 2]

Many of the properties of organic semiconductors, such as magnetism, light absorption and charge transport, show orientational anisotropy. [2, 3] To maximise the efficiency of a device based on these materials it is therefore important to study the molecular orientation in films and to assess the influence of different growth conditions and substrate treatments. X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation)_in crystalline materials, but cannot provide any information about amorphous or nanocrystalline films. In this paper we present a continuous wave X-band EPR study using the anisotropy of the CuPc EPR spectrum [4] to determine the orientation effects in different types of CuPc films. From these measurements we also gain insight into the molecular arrangement of films of CuPc mixed with the isomorphous H2Pc and with C60 in films typical of real solar cell systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wireless energy harvesting protocol is proposed for a decode-and-forward relay- assisted secondary user (SU) network in a cognitive spectrum sharing paradigm. An expression for the outage probability of the relay-assisted cognitive network is derived subject to the following power constraints: 1) the maximum power that the source and the relay in the SU network can transmit from the harvested energy, 2) the peak interference power from the source and the relay in the SU network at the primary user (PU) network, and 3) the interference power of the PU network at the relay-assisted SU network. The results show that as the energy harvesting conversion efficiency improves, the relay- assisted network with the proposed wireless energy harvesting protocol can operate with outage probabilities below 20% for some practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose cyclic prefix single carrier (CP-SC) full-duplex transmission in cooperative spectrum sharing to achieve multipath diversity gain and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the peak interference power constraint at the PUs are concurrently inflicted on the transmit power at the secondary source (SS) and the secondary relays (SRs); and 2) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays. Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively evaluate the exact and the asymptotic outage probability for several relay selection policies in frequency selective fading channels. Our results manifest that a zero diversity gain is obtained with full-duplex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This article investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse than Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing as well as square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe and extreme fading conditions, and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. Our results indicate that TWDP fading conditions can significantly degrade the sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable us to identify the limits of ED-based spectrum sensing and quantify the trade-offs between detection performance and energy efficiency for cognitive radio systems deployed within confined environments such as in-vehicular wireless networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose cyclic prefix single carrier full-duplex transmission in amplify-and-forward cooperative spectrum sharing networks to achieve multipath diversity and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays and 2) the primary users simultaneously suffer interference from the secondary source (SS) and the secondary relays (SRs). Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively compare the lower bounds on the outage probability and the corresponding asymptotic outage probability for max–min relay selection, partial relay selection, and maximum interference relay selection policies in frequency selective fading channels. To facilitate comparison, we provide the corresponding analysis for half-duplex. Our results show two complementary regions, named as the signal-to-noise ratio (SNR) dominant region and the residual loop interference dominant region, where the multipath diversity and spatial diversity can be achievable only in the SNR dominant region, however the diversity gain collapses to zero in the residual loop interference dominant region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the secrecy outage performance of spectrum sharing multiple-input multiple-output networks using generalized transmit antenna selection with maximal ratio combining over Nakagami-m channels. In particular, the outdated channel state information is considered at the process of antenna selection due to feedback delay. Considering a practical passive eavesdropper scenario, we derive the exact and asymptotic closed-form expressions of secrecy outage probability, which enable us to evaluate the secrecy performance with high efficiency and present a new design insight into the impact of key parameters on the secrecy performance. In addition, the analytical results demonstrate that the achievable secrecy diversity order is only determined by the parameters of the secondary network, while other parameters related to primary or eavesdropper’s channels have a significantly impact on the secrecy coding gain.