205 resultados para dental amalgam alloys
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Traditionally, undergraduate students in University College Cork (UCC) have been taught to use amalgam as the first choice material for direct restoration of posterior cavities. Since 2005 the use of composite resins has replaced amalgam as the first choice material. An audit was conducted of all direct restorations placed by final year students from UCC from 2004 until 2009. Results showed that over a six year period, final year UCC dental undergraduate students placed proportionately more direct composite resin restorations and significantly fewer amalgam restorations. The need for and undergraduate exposure to, provision of amalgam restorations may have to be revisited.
Resumo:
Shape memory NiTi alloys have been used extensively for medical device applications such as orthopedic, dental, vascular and cardiovascular devices on account of their unique shape memory effect (SME) and super-elasticity (SE). Laser welding is found to be the most suitable method used to fabricate NiTi-based medical components. However, the performance of laser-welded NiTi alloys under corrosive environments is not fully understood and a specific focus on understanding the corrosion fatigue behaviour is not evident in the literature. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi alloys using bending rotation fatigue (BRF) test which was integrated with a specifically designed corrosion cell. The testing environment was Hanks’ solution (simulated body fluid) at 37.5oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance at different periods during the BRF test. Experiments indicate that the laser-welded NiTi alloy would be more susceptible to the corrosion fatigue attack than the bare NiTi alloy. This finding can serve as a benchmark for the product designers and engineers to determine the factor of safety of NiTi medical devices fabricated using laser welding.
Resumo:
The measurement of neuropeptides in complex biological tissue samples requires efficient and appropriate extraction methods so that immunoreactivity is retained for subsequent radioimmunoassay detection. Since neuropeptides differ in their molecular mass, charge and hydrophobicity, no single method will suffice for the optimal extraction of various neuropeptides. In this study, dental pulp tissue was obtained from 30 human non-carious teeth. Of the three different neuropeptide extraction methods employed, boiling in acetic acid in the presence of protease inhibitors yielded the highest levels of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). High pressure liquid chromatography (HPLC) analysis of dental pulp tissue verified the authenticity of the neuropeptides extracted. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.