72 resultados para crush force

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the abundance of studies investigating the performance of composite structures under crush loading, disagreement remains in the literature regarding the effect of increased strain rate on the crush response. This study reports an experimental investigation of the behaviour of a carbon-epoxy composite energy absorber under static and dynamic loading with a strain rate of up to 100s<sup>-1</sup>. Consistent damage modes and measured force responses were obtained in samples tested under the same strain rate. The energy absorption was found to be independent of strain rate as the total energy absorption appeared to be largely associated with fibre-dominated fracture, which is independent of strain rate within the studied range. The results from this study are beneficial for the design of energy absorbing structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoforming processes generally employ sheet temperature monitoring as the primary means of process control. In this paper the development of an alternative system that monitors plug force is described. Tests using a prototype device have shown that the force record over a forming cycle creates a unique map of the process operation. Key process features such as the sheet modulus, sheet sag and the timing of the process stages may be readily observed, and the effects of changes in all of the major processing parameters are easily distinguished. Continuous, cycle-to-cycle tests show that the output is consistent and repeatable over a longer time frame, providing the opportunity for development of an on-line process control system. Further testing of the system is proposed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.