7 resultados para crimen sine lege

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Final oxidation products generated from guanosine and 2'-deoxyguano sine by reaction with dimethyldioxirane have been identified as 4-amidinocarbamoyl-5-hydroxyimidazoles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To investigate seasonal variation in month of diagnosis in children with type 1 diabetes registered in EURODIAB centres during 1989-2008.
Methods: 23 population-based registers recorded date of diagnosis in new cases of clinically diagnosed type 1 diabetes in children aged under 15 years. Completeness of ascertainment was assessed through capture-recapture methodology and was high in most centres. A general test for seasonal variation (11df) and Edward's test for sinusoidal (sine wave) variation (2df) were employed. Time series methods were also used to investigate if meteorological data were predictive of monthly counts after taking account of seasonality and long term trends.
Results: Significant seasonal variation was apparent in all but two small centres, with an excess of cases apparent in the winter quarter. Significant sinusoidal pattern was also evident in all but two small centres with peaks in December (14 centres), January (5 centres) or February (2 centres). Relative amplitude varied from ±11% to ±39% (median ±18%). There was no relationship across the centres between relative amplitude and incidence level. However there was evidence of significant deviation from the sinusoidal pattern in the majority of centres. Pooling results over centres, there was significant seasonal variation in each age-group at diagnosis, but with significantly less variation in those aged under 5 years. Boys showed marginally greater seasonal variation than girls. There were no differences in seasonal pattern between four sub-periods of the 20 year period. In most centres monthly counts of cases were not associated with deviations from normal monthly average temperature or sunshine hours; short term meteorological variations do not explain numbers of cases diagnosed.
Conclusions: Seasonality with a winter excess is apparent in all age-groups and both sexes, but girls and the under 5s show less marked variation. The seasonal pattern changed little in the 20 year period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant expression of the MAD2 protein has been linked to chromosomal instability, malignant transformation and chemoresistance. Although reduced MAD2 expression is well recognised in human cancer cell lines, the mechanism(s) underlying its downregulation remain elusive. The objective of this study was to establish the impact of hypoxia on MAD2 expression and to investigate the potential role of aberrant promoter methylation as a possible mechanism of MAD2 downregulation. For this purpose, three ovarian cancer cell lines, displaying differing levels of MAD2, were treated with chromatin modifying drugs, pre and post-hypoxia exposure and a DHPLC analysis of DNA promoter methylation carried out. We show that hypoxia induces downregulation of MAD2 expression, independently of MAD2 promoter methylation. We also show no evidence of MAD2 promoter methylation in breast and prostate cancer cells or in breast cancer clinical material. While our findings provide no evidence for MAD2 promoter methylation, we show a concomitant upregulation of p21 with downregulation of MAD2 in hypoxia. Our in vitro results were also confirmed in an ovarian cancer tissue microarray (TMA), where a reciprocal staining of MAD2 and CAIX was found in 21/60 (35%) of tumours. In summary, MAD2 downregulation may be a crucial mechanism by which hypoxic cells become chemorefractory. This stems from our previous work where we demonstrated that MAD2 downregulation induces cellular senescence, a viable cellular fate, with resultant cellular resistance to paclitaxel. Moreover, MAD2 downregulation could play a central role in the induction of chemoresistance in hypoxia, a key tumour microenvironment associated with chemoresistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial ovarian carcinoma (EOC) is characterised by late diagnosis and recurrences, both of which contribute to the high morbidity and mortality of this cancer. Unfortunately, EOC has an innate susceptibility to become chemo-resistant. Specifically, up to 30% of patients may not respond to current standard chemotherapy (paclitaxel and platinum in combination) and of those who have an initial response, some patients relapse within a few months. Therefore, in order to improve patient outcome it is crucial to establish what factors influence a patients' individualised response to chemotherapy. We analysed MAD2 protein expression in a patient cohort of 35 ovarian tumours and a panel of 5 ovarian cancer cell lines. We have demonstrated that low nuclear MAD2 expression intensity was significantly associated with chemo-resistant ovarian tumours (p=0.0136). Moreover, in vitro studies of the 5 ovarian cancer cell lines revealed that reduced MAD2 expression was associated with paclitaxel resistance. In silico analysis identified a putative miR-433 binding domain in the MAD2 3′UTR and expression profiling of miR-433 in the ovarian cancer cell lines showed that low MAD2 protein expression was associated with high miR-433 levels. In vitro over-expression of miR-433 attenuated MAD2 protein expression with a concomitant increase in cellular resistance to paclitaxel. Over-expression of a morpholino oligonucleotide that blocks miR-433 binding to MAD2 3′UTR stabilised MAD2 protein expression and protects from miR-433 induced degradation. Furthermore, miR-433 expression analysis in 35 ovarian tumour samples revealed that high miR-433 expression was associated with advanced stage presentations (p=0.0236). In conclusion, ovarian tumours that display low nuclear MAD2 intensity are chemo-resistant and stabilising MAD2 expression by antagonising miR-433 activity is a potential mechanism for restoring chemo-responsiveness in these tumours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.