22 resultados para corner mirror

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the dynamics of a movable mirror in a Fabry-Perot cavity coupled through radiation pressure to the cavity field and in contact with a thermal bath at finite temperature. In contrast to previous approaches, we consider arbitrary values of the effective detuning between the cavity and an external input field. We analyse the radiation-pressure effect on the Brownian motion of the mirror and its significance in the density noise spectrum of the output cavity field. Important properties of the mirror dynamics can be gathered directly from this noise spectrum. The presented reconstruction provides an experimentally useful tool in the characterization of the energy and rigidity of the mirror as modified by the coupling with light. We also give a quantitative analysis of the recent experimental observation of self-cooling of a micromechanical oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements, detection of gravitational waves and the study of the transition between classical and quantum behaviour of a mechanical system. Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field. The crucial coupling between radiation and mechanical motion was made possible by producing free-standing micromirrors of low mass (m approximately 400 ng), high reflectance (more than 99.6%) and high mechanical quality (Q approximately 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback. We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma mirrors are devices capable of switching very high laser powers on subpicosecond time scales with a dynamic range of 20–30 dB. A detailed study of their performance in the near-field of the laser beam is presented, a setup relevant to improving the pulse contrast of modern ultrahigh power lasers ~TW–PW!. The conditions under which high reflectivity can be achieved and focusability of the reflected beam retained are identified. At higher intensities a region of high specular reflectivity with rapidly decreasing focusability was observed, suggesting that specular reflectivity alone is not an adequate guide to the ideal range of plasma mirror operation. It was found that to achieve high reflectivity with negligible phasefront distortion of the reflected beam the inequality csDt,lLaser must be met (cs : sound speed, Dt: time from plasma formation to the peak of the pulse!. The achievable contrast enhancement is given by the ratio of plasma mirror reflectivity to cold reflectivity.