2 resultados para cooking time

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The depletion of three banned nitroimidazole drugs (dimetridazole (DMZ), metronidazole (MNZ) and ronidazole (RNZ)) was investigated in black tiger shrimp (Penaeus monodon) following in-water medication. The highest concentrations of residues were measured immediately after the 24 h immersion (day 0). At this time, MNZ and MNZ-OH residues were measured in shrimp tissue samples at concentrations ranging from 361–4189 and 0.28–6.6 μg kg−1, respectively. DMZ and its metabolites HMMNI ranged in concentration between 31509–37780 and 15.0–31.9 μg kg−1, respectively. RNZ and HMMNI concentrations ranged 14530–24206 and 25.0–55 μg kg−1, respectively. MNZ, DMZ and RNZ were the more persistent marker residues and can be detected for at least eight days post-treatment. MNZ-OH was only detectable on day 0 following treatment with MNZ. HMMNI residues were only detectable up to day 1 (0.97–3.2 μg kg−1) or 2 (1.2–4.5 μg kg−1) following DMZ and RNZ treatment, respectively. The parent drugs, MNZ, DMZ and RNZ were still measureable on day 8 at 0.12–1.00, 40.5–55 and 8.8–18.7 μg kg−1, respectively. The study also investigated the stability of nitroimidazole residues under various cooking procedures (frying, grilling, boiling and boiling followed by microwaving). The experiments were carried out in shrimp muscle tissue containing both high and low concentrations of these residues. Different cooking procedures showed the impact on nitroimidazole residue concentration in shrimp tissuetheir concentration depleted significantly, but partially, by boiling and/or microwaving but the compounds were largely resistant to conventional grilling or frying. Cooking cannot therefore be considered as a safeguard against harmful nitroimidazole residues in shrimp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Previous research has highlighted an ambiguity in understanding cooking related terminology and a number of barriers and facilitators to home meal preparation. However, meals prepared in the home still include convenience products (typically high in sugars, fats and sodium) which can have negative effects on health. Therefore, this study aimed to qualitatively explore: (1) how individuals define cooking from ‘scratch’, and (2) their barriers and facilitators to cooking with basic ingredients.
Methods: 27 semi-structured interviews were conducted with participants (aged 18-58 years) living on the island of Ireland, eliciting definitions of ‘cooking from scratch’ and exploring the reasons participants cook in a particular way. The interviews were professionally transcribed verbatim and Nvivo 10 was used for an inductive thematic analysis.
Results: Our results highlighted that although cooking from ‘scratch’ lacks a single definition, participants viewed it as optimal cooking. Barriers to cooking with raw ingredients included: 1) time pressures; (2) desire to save money; (3) desire for effortless meals; (4) family food preferences; and (5) effect of kitchen disasters. Facilitators included: 1) desire to eat for health and well-being; (2) creative inspiration; (3) ability to plan and prepare meals ahead of time; and (4) greater self-efficacy in one’s cooking ability.
Conclusions: Our findings contribute to understanding how individuals define cooking from ‘scratch’, and barriers and facilitators to cooking with raw ingredients. Interventions should focus on practical sessions to increase cooking self-efficacy; highlight the importance of planning ahead and teach methods such as batch cooking and freezing to facilitate cooking from scratch.