3 resultados para concurrent evidence
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In older adults, cognitive resources play a key role in maintaining postural stability. In the present study, we evaluated whether increasing postural instability using sway referencing induces changes in resource allocation in dual-task performance leading older adults to prioritize the more age-salient posture task over a cognitive task. Young and older adults participated in the study which comprised two sessions. In the first session, three posture tasks (stable, sway reference visual, sway reference somatosensory) and a working memory task (n-back) were examined. In the second session, single- and dual-task performance of posture and memory were assessed. Postural stability improved with session. Participants were more unstable in the sway reference conditions, and pronounced age differences were observed in the somatosensory sway reference condition. In dual-task performance on the stable surface, older adults showed an almost 40% increase in instability compared to single-task. However, in the sway reference somatosensory condition, stability was the same in single- and dual-task performance, whereas pronounced (15%) costs emerged for cognition. These results show that during dual-tasking while standing on a stable surface, older adults have the flexibility to allow an increase in instability to accommodate cognitive task performance. However, when instability increases by means of compromising somatosensory information, levels of postural control are kept similar in single- and dual-task, by utilizing resources otherwise allocated to the cognitive task. This evidence emphasizes the flexible nature of resource allocation, developed over the life-span to compensate for age-related decline in sensorimotor and cognitive processing.
Resumo:
A significant cold event, deduced from the Greenland ice cores, took place between 8200 and 8000 cal. BP. Modeling of the event suggests that higher northern latitudes would have also experienced considerable decreases in precipitation and that Ireland would have witnessed one of the greatest depressions. However, no well-dated proxy record exists from the British Isles to test the model results. Here we present independent evidence for a phase of major pine recruitment on Irish bogs at around 8150 cal. BP. Dendrochronological dating of subfossil trees from three sites reveal synchronicity in germination across the region, indicative of a regional forcing, and allows for high-precision radiocarbon based dating. The inner-rings of 40% of all samples from the north of Ireland dating to the period 8500-7500 cal. BP fall within a 25-yr window. The concurrent colonization of pine on peatland is interpreted as drier conditions in the region and provides the first substantive proxy data in support of a significant hydrological change in the north of Ireland accompanying the 8.2 ka event. The dating uncertainties associated with the Irish pine record and the Greenland Ice Core Chronology 2005 (GICC05) do not allow for any overlap between the two. Our results indicate that the discrepancy could be an artifact of dating inaccuracy, and support a similar claim by Lohne et al. (2013) for the Younger Dryas boundaries. If real, this asynchrony will most likely have affected interpretations of previous proxy alignments.
Resumo:
The Greenland Ice Core Chronology 2005 (GICC05) and the radiocarbon calibration curve (IntCal) are the foremost time scales used in paleoclimatic and paleoenvironmental studies of the most recent 10 k.y. Due to varying and often insufficient dating resolution, opportunities to test the synchrony of these two influential chronologies are rare. Here we present evidence for a phase of major pine recruitment on Irish bogs at ca. 8160 yr B.P. Dendrochronological dating of subfossil trees from three sites reveals synchronicity in germination across the study area, indicative of a regional forcing. The concurrent colonization of pine on peatland is interpreted in terms of drier surface conditions and provides the first substantive proxy data in support of a significant hydroclimatic change in the north of Ireland accompanying the 8.2 ka climate cooling event. The date of pine establishment does not overlap with the GICC05 age range for the event, and possible lags between responses are unlikely to explain the full difference. In light of recent studies highlighting a possible offset in GICC05 and IntCal dates, the Irish pine record supports the notion of ice core dates being too early during the period of study. If the suggested discrepancy in timing is an artifact of chronological error, it is likely to have affected interpretations of previous proxy comparisons and alignments.