2 resultados para complex text layout engine
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The importance and use of text extraction from camera based coloured scene images is rapidly increasing with time. Text within a camera grabbed image can contain a huge amount of meta data about that scene. Such meta data can be useful for identification, indexing and retrieval purposes. While the segmentation and recognition of text from document images is quite successful, detection of coloured scene text is a new challenge for all camera based images. Common problems for text extraction from camera based images are the lack of prior knowledge of any kind of text features such as colour, font, size and orientation as well as the location of the probable text regions. In this paper, we document the development of a fully automatic and extremely robust text segmentation technique that can be used for any type of camera grabbed frame be it single image or video. A new algorithm is proposed which can overcome the current problems of text segmentation. The algorithm exploits text appearance in terms of colour and spatial distribution. When the new text extraction technique was tested on a variety of camera based images it was found to out perform existing techniques (or something similar). The proposed technique also overcomes any problems that can arise due to an unconstraint complex background. The novelty in the works arises from the fact that this is the first time that colour and spatial information are used simultaneously for the purpose of text extraction.
Resumo:
A new scheme, sketch-map, for obtaining a low-dimensional representation of the region of phase space explored during an enhanced dynamics simulation is proposed. We show evidence, from an examination of the distribution of pairwise distances between frames, that some features of the free-energy surface are inherently high-dimensional. This makes dimensionality reduction problematic because the data does not satisfy the assumptions made in conventional manifold learning algorithms We therefore propose that when dimensionality reduction is performed on trajectory data one should think of the resultant embedding as a quickly sketched set of directions rather than a road map. In other words, the embedding tells one about the connectivity between states but does not provide the vectors that correspond to the slow degrees of freedom. This realization informs the development of sketch-map, which endeavors to reproduce the proximity information from the high-dimensionality description in a space of lower dimensionality even when a faithful embedding is not possible.