111 resultados para commuting operators

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Asymptotic estimates of the norms of orbits of certain operators that commute with the classical Volterra operator V acting on L-P[0,1], with 1 0, but also to operators of the form phi (V), where phi is a holomorphic function at zero. The method to obtain the estimates is based on the fact that the Riemann-Liouville operator as well as the Volterra operator can be related to the Levin-Pfluger theory of holomorphic functions of completely regular growth. Different methods, such as the Denjoy-Carleman theorem, are needed to analyze the behavior of the orbits of I - cV, where c > 0. The results are applied to the study of cyclic properties of phi (V), where phi is a holomorphic function at 0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove that any bounded linear operator on $L_p[0,1]$ for $1\leq p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tuple $(T_1,\dots,T_n)$ of continuous linear operators on a topological vector space $X$ is called hypercyclic if there is $x\in X$ such that the the orbit of $x$ under the action of the semigroup generated by $T_1,\dots,T_n$ is dense in $X$. This concept was introduced by N.~Feldman, who have raised 7 questions on hypercyclic tuples. We answer those 4 of them, which can be dealt with on the level of operators on finite dimensional spaces. In
particular, we prove that the minimal cardinality of a hypercyclic tuple of operators on $\C^n$ (respectively, on $\R^n$) is $n+1$ (respectively, $\frac n2+\frac{5+(-1)^n}{4}$), that there are non-diagonalizable tuples of operators on $\R^2$ which possess an orbit being neither dense nor nowhere dense and construct a hypercyclic 6-tuple of operators on $\C^3$ such that every operator commuting with each member of the tuple is non-cyclic.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that every unital spectrally bounded operator from a properly infinite von Neumann algebra onto a semisimple Banach algebra is a Jordan homomorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.