96 resultados para cold yoke
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems
Resumo:
Results are presented of high-resolution scattering experiments involving electron collisions with CO2 and CS2, between a few meV and 200 meV impact energy. Virtual state scattering is shown to dominate the low-energy behaviour for both species. The most striking features of the scattering spectrum for CS2 are, however, giant resonances with cross sections greater by more than an order of magnitude than those generally encountered in low-energy scattering. A strong feature centred at 15 meV is attributed to the involvement of CS2- and is interpreted to be a consequence of the virtual state effect.
Resumo:
The scattering of electrons with kinetic energies down to a few meV by para-xylene and para-difluorobenzene has been observed experimentally with an electron beam energy resolution of 0.95 to 1.5 meV (full width half maximum). At low electron energies the collisions can be considered as cold scattering events because the de Broglie wavelength of the electron is considerably larger than the target dimensions. The scattering cross sections measured rise rapidly at low energy due to virtual state scattering. The nature of this scattering process is discussed using s- and p-wave phase shifts derived from the experimental data. Scattering lengths are derived of, respectively, -9.5+/-0.5 and -8.0+/-0.5 a.u. for para-xylene and para-difluorobenzene. The virtual state effect is interpreted in terms of nuclear diabatic and partially adiabatic models, involving the electronic and vibronic symmetries of the unoccupied orbitals in the target species. The concept of direct and indirect virtual state scattering is introduced, through which the present species, in common with carbon dioxide and benzene, scatter through an indirect virtual state process, whereas other species, such as perfluorobenzene, scatter through a direct process. (C) 2005 American Institute of Physics.
Resumo:
Experimental data are presented for the scattering of cold electrons by CS2, for both integral and backward scattering, between a few meV and a few hundred meV impact energy. Giant resonances with cross sections in excess of 50 Angstrom(2) are observed below 100 meV, associated with the transient formation of CS2- at 15 meV and with the bend and symmetric stretch of CS2 at thresholds of 49 and 82 meV, respectively. The resonance at 49 meV is 2 orders of magnitude greater in cross section than a dipole impulsive model predicts. These structures are superimposed on a sharp rise in the scattering cross section at low energy, which may be attributed to virtual state scattering.
Resumo:
Experimental data are presented for the scattering of electrons by H2O between 17 and 250 meV impact energy. These results are used in conjunction with a generally applicable method, based on a quantum defect theory approach to electron-polar molecule collisions, to derive the first set of data for state-to-state rotationally inelastic scattering cross sections based on experimental values.
Resumo:
We extend the semiclassical description of two-state atomic collisions to low energies for which the impact parameter treatment fails. The problem reduces to solving a system of first-order differential equations with coefficients whose semiclassical asymptotes experience the Stokes phenomenon in the complex coordinate plane. Primitive semiclassical and uniform Airy approximations are discussed.
Resumo:
The Northern Hemisphere cooling event 8200 years ago is believed to represent the last known major freshwater pulse into the North Atlantic as a result of the final collapse of the North American Laurentide ice sheet. This pulse of water is generally believed to have occurred independently of orbital variations and provides an analogue for predicted increases in high-latitude precipitation and ice melt as a result of anthropogenically driven future climate change. The precise timing, duration and magnitude of this event, however, are uncertain, with suggestions that the 100-yr meltwater cooling formed part of a longer-term cold period in the early Holocene. Here we undertook a multiproxy, high-resolution investigation of a peat sequence at Dooagh, Achill Island, on the west coast of Ireland, to determine whether the 8200-year cold event impacted upon the terrestrial vegetation immediately downwind of the proposed changes in the North Atlantic. We find clear evidence for an oscillation in the early Holocene using various measures of pollen, indicating a disruption in the vegetation leading to a grassland-dominated landscape, most probably driven by changes in precipitation rather than temperature. Radiocarbon dating was extremely problematic, however, with bulk peat samples systematically too young for the North Atlantic event, suggesting significant contamination from downward root penetration. The sustained disruption to vegetation over hundreds of years at Dooagh indicates the landscape was impacted by a long-term cooling event in the early Holocene, and not the single century length 8200-year meltwater event proposed in many other records in the North Atlantic region.
Resumo:
The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold dissociation from the ground vibrational state by 40 fs laser pulses at 800 nm. At the highest intensities used, dissociation through the absorption of at least four photons is found to be the dominant process.