60 resultados para cobalt-based catalysts
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Electrochemical water splitting used for generating hydrogen has attracted increasingly attention due to energy and environmental issues. It is a major challenge to design an efficient, robust and inexpensive electrocatalyst to achieve preferable catalytic performance. Herein, a novel three-dimensional (3D) electrocatalyst was prepared by decorating nanostructured biological material-derived carbon nanofibers with in situ generated cobalt-based nanospheres (denoted as CNF@Co) through a facile approach. The interconnected porous 3D networks of the resulting CNF@Co catalyst provide abundant channels and interfaces, which remarkably favor both mass transfer and oxygen evolution. The as-prepared CNF@Co shows excellent electrocatalytic activity towards the oxygen evolution reactions with an onset potential of about 0.445 V vs. Ag/AgCl. It only needs a low overpotential of 314 mV to achieve a current density of 10 mA/cm<sup>2</sup> in 1.0 M KOH. Furthermore, the CNF@Co catalyst exhibits excellent stability towards water oxidation, even outperforming commercial IrO<inf>2</inf> and RuO<inf>2</inf> catalysts.
Resumo:
CO oxidation on TiO2 supported Au has been studied using density functional theory calculations. Important catalytic roles of the oxide have been identified: (i) CO oxidation occurs at the interface between Au and the oxide with a very small barrier; and (ii) O-2 adsorption at the interface is the key step in the reaction. The physical origin of the oxide promotion effect has been further investigated: The oxide enhances electron transfer from the Au to the antibonding states of O-2, giving rise to (i) strong ionic bonding between the adsorbed O-2, Au, and the Ti cation; and (ii) a significant activation of O-2 towards CO oxidation.
Resumo:
Catalysts based on molybdena (MoO3) reduced at mild temperatures are highly active and selective for the hydroisomerization of alkanes: however, further catalyst development has been hampered by the structural complexity of the material and the controversy regarding the nature of the active phase. The present work is aimed at determining the relationship between the content of carbon present in an oxycarbide phase and the activity for n-butane hydroisomerization. A series of temperature-programmed oxidation (TPO) and temporal analysis of product (TAP) data showed that the oxycarbidic carbon content is not related to the activity of the sample for the isomerization of n-butane to isobutane. The formation of a carbon-containing phase is, therefore, not crucial to obtain an active catalyst. This study also highlights the capability of the multi-pulse TAP technique to investigate structure-activity relationships over materials with readily variable atomic composition. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present work emphasizes the importance of including a full quantitative analysis when in situ operando methods are used to investigate reaction mechanisms and reaction intermediates. The fact that some surface species exchange at a similar rate to the reaction product during isotopic transients is a necessary but not sufficient criterion for participation as a key reaction intermediate. This is exemplified here in the case of highly active low-temperature water-gas shift (WGS) catalysts based on gold and platinum. Operando DRIFTS data, isotopic exchanges, and DRIFTS calibration curves relating the concentration of formate species to the corresponding DRIFTS band intensity were combined to obtain a quantitative measure of the specific rate of formate decomposition. Despite displaying a rapid isotopic exchange rate (sometimes as fast as that of the reaction product CO2), the concentration of formates seen by DRIFTS was found to account for at most only 10% of the CO2 produced under the experimental conditions reported herein. These new results obtained on Au/CeZrO4 and Pt/CeO2 preparations (which are among the most active low-temperature WGS catalysts reported to date), led to the same conclusions regarding the minor role of IR-observable formates as those obtained in the case of less active Au/Ce(La)O-2 and Pt/ZrO2 catalysts. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Gold-based catalysts have been of intense interests in recent years, being regarded as a new generation of catalysts due to their unusually high catalytic performance. For example, CO oxidation on Au/TiO2 has been found to occur at a temperature as low as 200 K. Despite extensive studies in the field, the microscopic mechanism of CO oxidation on Au-based catalysts remains controversial. Aiming to provide insight into the catalytic roles of Au, we have performed extensive density functional theory calculations for the elementary steps in CO oxidation on Au surfaces. O atom adsorption, CO adsorption, O-2 dissociation, and CO oxidation on a series of Au surfaces, including flat surfaces, defects and small clusters, have been investigated in detail. Many transition states involved are located, and the lowest energy pathways are determined. We find the following: (i) the most stable site for O atom on Au is the bridge site of step edge, not a kink site; (ii) O-2 dissociation on Au (O-2-->20(ad)) is hindered by high barriers with the lowest barrier being 0.93 eV on a step edge; (iii) CO can react with atomic O with a substantially lower barrier, 0.25 eV, on Au steps where CO can adsorb; (iv) CO can react with molecular O-2 on Au steps with a low barrier of 0.46 eV, which features an unsymmetrical four-center intermediate state (O-O-CO); and (v) O-2 can adsorb on the interface of Au/TiO2 with a reasonable chemisorption energy. On the basis of our calculations, we suggest that (i) O-2 dissociation on Au surfaces including particles cannot occur at low temperatures; (ii) CO oxidation on Au/inactive-materials occurs on Au steps via a two-step mechanism: CO+O-2-->CO2+O, and CO+O-->CO2; and (iii) CO oxidation on Au/active-materials also follows the two-step mechanism with reactions occurring at the interface.
Resumo:
The effect of SO2 on Pd-based catalysts for the combustion of methane has been investigated. It is shown that while SO2 poisons Al2O3- and SiO2-supported catalysts. pre-treatment of Pd/ZrO2 by SO2 enhances the activity substantially.
Resumo:
Hydrogenation of tertiary amides, in particular, N-methylpyrrolidin-2-one, can be efficiently facilitated by a TiO(2)-supported bimetallic Pt/Re catalyst at low temperatures and pressures. Characterisation of the catalysts and kinetic tests have shown that the close interaction between the Re and Pt is crucial to the high activity observed. DFT calculations were used to examine a range of metal combinations and show that the role of the uncoordinated Re is to activate the C=O and that of the Pt is as a hydrogenation catalyst, removing intermediates from the catalyst surface. The rate enhancement observed on the TiO(2) support is thought to be due to the presence of oxygen vacancies allowing adsorption and weakening of the C=O bond. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).
Resumo:
A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).
Resumo:
Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C-2 + C-2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadiene formation on Pd-based catalysts are also investigated and compared with experimental results.
Resumo:
The hydrogenation of 4-phenyl-2-butanone over Pt/TiO2 and Pt/SiO2 catalysts has been performed in a range of solvents and it has been observed that the solvent impacted on the selectivity of ketone and aromatic ring hydrogenation as well as the overall TOF of the titania catalyst with no solvent effect on selectivity observed using the silica supported catalyst where ring hydrogenation was favored. For the titania catalyst, alkanes were found to favor ring hydrogenation whereas aromatics and alcohols led to carbonyl hydrogenation. A two-site catalyst model is proposed whereby the aromatic ring hydrogenation occurs over the metal sites while carbonyl hydrogenation is thought to occur predominantly at interfacial sites, with oxygen vacancies in the titania support activating the carbonyl. The effect of the solvent on the hydrogenation reaction over the titania catalyst was related to competition for the active sites between solvent and 4-phenyl-2-butanone.