11 resultados para cloud service

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing technology has rapidly evolved over the last decade, offering an alternative way to store and work with large amounts of data. However data security remains an important issue particularly when using a public cloud service provider. The recent area of homomorphic cryptography allows computation on encrypted data, which would allow users to ensure data privacy on the cloud and increase the potential market for cloud computing. A significant amount of research on homomorphic cryptography appeared in the literature over the last few years; yet the performance of existing implementations of encryption schemes remains unsuitable for real time applications. One way this limitation is being addressed is through the use of graphics processing units (GPUs) and field programmable gate arrays (FPGAs) for implementations of homomorphic encryption schemes. This review presents the current state of the art in this promising new area of research and highlights the interesting remaining open problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new observations of 470 stars using the Fibre Large Array Multi-Element Spectrograph ( FLAMES) instrument in fields centered on the clusters NGC330 and NGC346 in the Small Magellanic Cloud (SMC), and NGC2004 and the N11 region in the Large Magellanic Cloud (LMC). A further 14 stars were observed in the N11 and NGC330 fields using the Ultraviolet and Visual Echelle Spectrograph (UVES) for a separate programme. Spectral classifications and stellar radial velocities are given for each target, with careful attention to checks for binarity. In particular, we have investigated previously unexplored regions around the central LH9/LH10 complex of N11, finding similar to 25 new O-type stars from our spectroscopy. We have observed a relatively large number of Be-type stars that display permitted Fe II emission lines. These are primarily not in the cluster cores and appear to be associated with classical Be-type stars, rather than pre main-sequence objects. The presence of the Fe II emission, as compared to the equivalent width of Ha, is not obviously dependent on metallicity. We have also explored the relative fraction of Be- to normal B-type stars in the field-regions near to NGC330 and NGC2004, finding no strong evidence of a trend with metallicity when compared to Galactic results. A consequence of service observations is that we have reasonable time-sampling in three of our FLAMES fields. We find lower limits to the binary fraction of O- and early B-type stars of 23 to 36%. One of our targets (NGC346-013) is especially interesting with a massive, apparently hotter, less luminous secondary component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software-as-a-service (SaaS) is a type of software service delivery model which encompasses a broad range of business opportunities and challenges. Users and service providers are reluctant to integrate their business into SaaS due to its security concerns while at the same time they are attracted by its benefits. This article highlights SaaS utility and applicability in different environments like cloud computing, mobile cloud computing, software defined networking and Internet of things. It then embarks on the analysis of SaaS security challenges spanning across data security, application security and SaaS deployment security. A detailed review of the existing mainstream solutions to tackle the respective security issues mapping into different SaaS security challenges is presented. Finally, possible solutions or techniques which can be applied in tandem are presented for a secure SaaS platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting anomalies in Cloud data centre operation is vital. Given the vast complexity of the data centre system software stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting anomalies often use machine learning techniques, application instance behaviours or system metrics distribu- tion, which are complex to implement in Cloud computing environments as they require training, access to application-level data and complex processing. This paper presents LADT, a lightweight anomaly detection tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre- lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and evaluate LADT using a Cloud environment, where it shows that the hosting node I/O operations per second (IOPS) are strongly correlated with the aggregated virtual machine IOPS, but this correlation vanishes when an application stresses the disk, indicating a node-level anomaly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty profiles are used to study the effects of contention within cloud and service-based environments. An uncertainty profile provides a qualitative description of an environment whose quality of service (QoS) may fluctuate unpredictably. Uncertain environments are modelled by strategic games with two agents; a daemon is used to represent overload and high resource contention; an angel is used to represent an idealised resource allocation situation with no underlying contention. Assessments of uncertainty profiles are useful in two ways: firstly, they provide a broad understanding of how environmental stress can effect an application’s performance (and reliability); secondly, they allow the effects of introducing redundancy into a computation to be assessed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand Side Management (DSM) plays an important role in Smart Grid. It has large scale access points, massive users, heterogeneous infrastructure and dispersive participants. Moreover, cloud computing which is a service model is characterized by resource on-demand, high reliability and large scale integration and so on and the game theory is a useful tool to the dynamic economic phenomena. In this study, a scheme design of cloud + end technology is proposed to solve technical and economic problems of the DSM. The architecture of cloud + end is designed to solve technical problems in the DSM. In particular, a construct model of cloud + end is presented to solve economic problems in the DSM based on game theories. The proposed method is tested on a DSM cloud + end public service system construction in a city of southern China. The results demonstrate the feasibility of these integrated solutions which can provide a reference for the popularization and application of the DSM in china.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When orchestrating Web service workflows, the geographical placement of the orchestration engine (s) can greatly affect workflow performance. Data may have to be transferred across long geographical distances, which in turn increases execution time and degrades the overall performance of a workflow. In this paper, we present a framework that, given a DAG-based workflow specification, computes the optimal Amazon EC2 cloud regions to deploy the orchestration engines and execute a workflow. The framework incorporates a constraint model that solves the workflow deployment problem, which is generated using an automated constraint modelling system. The feasibility of the framework is evaluated by executing different sample workflows representative of scientific workloads. The experimental results indicate that the framework reduces the workflow execution time and provides a speed up of 1.3x-2.5x over centralised approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How can GPU acceleration be obtained as a service in a cluster? This question has become increasingly significant due to the inefficiency of installing GPUs on all nodes of a cluster. The research reported in this paper is motivated to address the above question by employing rCUDA (remote CUDA), a framework that facilitates Acceleration-as-a-Service (AaaS), such that the nodes of a cluster can request the acceleration of a set of remote GPUs on demand. The rCUDA framework exploits virtualisation and ensures that multiple nodes can share the same GPU. In this paper we test the feasibility of the rCUDA framework on a real-world application employed in the financial risk industry that can benefit from AaaS in the production setting. The results confirm the feasibility of rCUDA and highlight that rCUDA achieves similar performance compared to CUDA, provides consistent results, and more importantly, allows for a single application to benefit from all the GPUs available in the cluster without loosing efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud data centres are implemented as large-scale clusters with demanding requirements for service performance, availability and cost of operation. As a result of scale and complexity, data centres typically exhibit large numbers of system anomalies resulting from operator error, resource over/under provisioning, hardware or software failures and security issus anomalies are inherently difficult to identify and resolve promptly via human inspection. Therefore, it is vital in a cloud system to have automatic system monitoring that detects potential anomalies and identifies their source. In this paper we present a lightweight anomaly detection tool for Cloud data centres which combines extended log analysis and rigorous correlation of system metrics, implemented by an efficient correlation algorithm which does not require training or complex infrastructure set up. The LADT algorithm is based on the premise that there is a strong correlation between node level and VM level metrics in a cloud system. This correlation will drop significantly in the event of any performance anomaly at the node-level and a continuous drop in the correlation can indicate the presence of a true anomaly in the node. The log analysis of LADT assists in determining whether the correlation drop could be caused by naturally occurring cloud management activity such as VM migration, creation, suspension, termination or resizing. In this way, any potential anomaly alerts are reasoned about to prevent false positives that could be caused by the cloud operator’s activity. We demonstrate LADT with log analysis in a Cloud environment to show how the log analysis is combined with the correlation of systems metrics to achieve accurate anomaly detection.