11 resultados para climate proxies
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
Resumo:
From the Sellevollmyra bog at Andoya, northern Norway, a 440-cm long peat core covering the last c. 7000 calendar years was examined for humification, loss-on-ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle-match of 35 C-14 dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified ( periods of the most fundamental changes in italics): 6410-6380, 6230-6050, 5730-5640, 5470-5430, 5340-5310, 5270-5100, 4790-4710, 4890-4820, 4380-4320, 4220-4120, 4000-3810, 3610-3580, 3370-3340 ( regionally 2850-2750; in Sellevollmyra a hiatus between 2960-2520), 2330-2220, 1950, 1530-1450, 1150-840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla-4 tephra layer started some decades before the eruption event.
Resumo:
Our review of paleoclimate information for New Zealand pertaining to the past 30,000 years has identified a general sequence of climatic events, spanning the onset of cold conditions marking the final phase of the Last Glaciation, through to the emergence to full interglacial conditions in the early Holocene. In order to facilitate more detailed assessments of climate variability and any leads or lags in the timing of climate changes across the region, a composite stratotype is proposed for New Zealand. The stratotype is based on terrestrial stratigraphic records and is intended to provide a standard reference for the intercomparison and evaluation of climate proxy records. We nominate a specific stratigraphic type record for each climatic event, using either natural exposure or drill core stratigraphic sections. Type records were selected on thebasis of having very good numerical age control and a clear proxy record. In all cases the main proxy of the type record is subfossil pollen. The type record for the period from ca 30 to ca 18 calendar kiloyears BP (cal. ka BP) is designated in lake-bed sediments from a small morainic kettle lake (Galway tarn) in western South Island. The Galway tarn type record spans a period of full glacial conditions (Last Glacial Coldest Period, LGCP) within the Otira Glaciation, and includes three cold stadials separated by two cool interstadials. The type record for the emergence from glacial conditions following the termination of the Last Glaciation (post-Termination amelioration) is in a core of lake sediments from a maar (Pukaki volcanic crater) in Auckland, northern North Island, and spans from ca 18 to 15.64±0.41 cal. ka BP. The type record for the Lateglacial period is an exposure of interbedded peat and mud at montane Kaipo bog, eastern North Island. In this high-resolution type record, an initial mild period was succeeded at 13.74±0.13 cal. ka BP by a cooler period, which after 12.55±0.14 cal. ka BP gave way to a progressive ascent to full interglacial conditions that were achieved by 11.88±0.18 cal. ka BP. Although a type section is not formally designated for the Holocene Interglacial (11.88±0.18 cal. ka BP to the present day), the sedimentary record of Lake Maratoto on the Waikato lowlands, northwestern North Island, is identified as a prospective type section pending the integration and updating of existing stratigraphic and proxy datasets, and age models. The type records are interconnected by one or more dated tephra layers, the ages of which are derived from Bayesian depositional modelling and OxCal-based calibrations using the IntCal09 dataset. Along with the type sections and the Lake Maratoto record, important, well-dated terrestrial reference records are provided for each climate event. Climate proxies from these reference records include pollen flora, stable isotopes from speleothems, beetle and chironomid fauna, and glacier moraines. The regional composite stratotype provides a benchmark against which to compare other records and proxies. Based on the composite stratotype, we provide an updated climate event stratigraphic classification for the New Zealand region. © 2013 Elsevier Ltd.
Resumo:
Results of a fossil Coleoptera (beetle) fauna from a fen edge sequence from Hatfield Moors, Humberhead Levels, are presented. Mire ontogeny inferred from this location and others are discussed, particularly in the light of previous palynological and plant macrofossil investigations. Peat initiation across most of the site centres around 3000 cal BC, characterised by a Calluna-Eriophorum heath with areas of Pinus-Betula woodland. The onset of peat accumulation on the southern margins of the site was delayed until 1520-1390 cal BC and appears to overlap closely with a recurrence surface at a pollen site (HAT 2) studied by Brian Smith (1985, 2002) dated to 1610-1440 cal BC, suggesting that increased surface wetness may have caused mire expansion at this time. The faunas illustrate the transition from eutrophic and mesotrophic fen to ombrotrophic raised mire, although the significance of both Pinus- and Calluna-indicating species through the sequence suggests that heath habitats may have continued to be important. Elsewhere, this earlier phase of rich fen is lacking and mesotrophic mire developed immediately above nutrient poor sands, with ombrotrophic conditions indicated soon after. Correspondence analysis of the faunas provides valuable insights into the importance of sandy heath habitats on Hatfield Moors. The continuing influence of the underlying coversands suggests these may have been instrumental in mire ontogeny. The research highlights the usefulness of using Coleoptera to assess mire ontogeny, fluctuations in site hydrology and vegetation cover, particularly when used in conjunction with other peatland proxies. The significance of a suite of extinct beetle species is discussed with reference to forest history and climate change.
Resumo:
We present a high-resolution and independently dated multiproxy lake sediment record from the paleolake at Les Echets in southeastern France that displays synchronous changes in independent limnic and terrestrial ecosystem proxies, in concert with millennial-scale climate oscillations during the last glacial period. Distinct lake-level fluctuations, low lake organic productivity, and open, treeless vegetation indicate cold and dry conditions in response to Heinrich events. Alternating phases of higher and low lake organic productivity, stratified surface waters and long-lasting lake ice cover, decreased or increased catchment erosion, and tree-dominated or herb-dominated vegetation resemble Dansgaard-Oeschger interstadial-stadial variability. Transitions between different ecological states occurred in as little as 40-230 yr and seem to have been controlled by the position of the Polar Front. Ecosystem response after 30 ka suggests that local climate conditions became more important. Our results demonstrate that all parts of the terrestrial system responded to the abrupt and dramatic climatic changes associated with Dansgaard-Oeschger and Heinrich events, and that regional factors modulated ecosystem response.
Resumo:
The discovery of sensitive paleoenvironmental proxies contained within fossilized rock hyrax middens from the margin of the central Namib Desert, Africa, is providing unprecedented insight into the region's environmental history. High-resolution stable carbon and nitrogen isotope records spanning 0-11,700 cal (calibrated) yr B. P. indicate phases of relatively humid conditions from 8700-7500, 6900-6700, 5600-4900, and 4200-3500 cal yr B. P., with a period of marked aridity occurring from 3500 until ca. 300 cal yr B. P. Transitions between these phases appear to have occurred very rapidly, often within <200 years. Of particular importance are: (1) the observed relationship between regional aridification and the decline in Northern Hemisphere insolation across the Holocene, and (2) the significance of suborbital scale variations in climate that covary strongly with fluctuations in solar forcing. Together, these elements call for a fundamental reexamination of the role of orbital forcing on tropical African systems, and a reconsideration of what factors drive climate change in the region. The quality and resolution of these data far surpass any other evidence available from the region, and the continued development of this unique archive promises to revolutionize paleoenvironmental studies in southern Africa.
Resumo:
The Bonn Convention on the Conservation of Migratory Species of Wild Animals adopted a Resolution in 2005 recognising the impacts of climate change on migratory species. It called on Contracting Parties to undertake more research to improve our understanding of these impacts and to implement adaptation measures to reduce foreseeable adverse effects. Given the large diversity of taxa and species affected by climate change, it is impossible to monitor all species and effects thereof. However, it is likely that many of the key ecological and physical processes through which climate change may impact wildlife could be monitored using a suite of indicators, each comprising parameters of species/populations or groups of species as proxies for wider assemblages, habitats and ecosystems. Herein, we identify a suite of 17 indicators whose attributes could reveal negative impacts of climate change on the global status of migratory species: 4 for birds, 4 for marine mammals, 2 for sea turtles, 1 for fish, 3 for land mammals and 3 for bats. A few of these indicators would be relatively straightforward to develop, but most would require additional data collation, and in many cases methodological development. Choosing and developing indicators of the impacts of climate change on migratory species is a challenge, particularly with endangered species, which are subject to many other pressures. To identify and implement conservation measures for these species, indicators must account for the full ensemble of pressures, and link to a system of alerts and triggers for action.
Resumo:
A single raised bog from the eastern Netherlands has been repeatedly analysed and 14C dated over the past few decades. Here we assess the within-site variability of fossil proxy data through comparing the regional
pollen, macrofossils and non-pollen palynomorphs of four of these profiles. High-resolution chronologies were obtained using 14C dating and Bayesian age-depth modelling. Where chronologies of profiles overlap, proxy curves are compared between the profiles using greyscale graphs that visualise chronological uncertainties. Even at this small spatial scale, there is considerable variability of the fossil proxy curves. Implications regarding signal (climate) and noise (internal dynamics) of the different types of fossil proxies are discussed. Single cores are of limited value for reconstructing centennial-scale climate change, and only by combining multiple cores and proxies can we obtain a reliable understanding of past environmental change and possible forcing factors (e.g., solar variability).
Resumo:
We present a decadal-scale late Holocene climate record based on diatoms, biogenic silica, and grain size from a 12-m sediment core (VEC02A04) obtained from Frederick Sound in the Seymour-Belize Inlet Complex of British Columbia, Canada. Sediments are characterized by graded, massive, and laminated intervals. Laminated intervals are most common between c. 2948–2708 cal. yr BP and c. 1992–1727 cal. yr BP. Increased preservation of laminated sediments and diatom assemblage changes at this time suggest that cli- mate became moderately drier and cooler relative to the preceding and succeeding intervals. Spectral and wavelet analyses are used to test for statistically significant periodicities in time series of proxies of primary production (total diatom abundance, biogenic silica) and hydrology (grain size) preserved in the Frederick Sound record. Periodicities of c. 42–53, 60–70, 82–89, 241–243, and 380 yrs are present. Results are com- pared to reconstructed sunspot number data of Solanki et al. (2004) using cross wavelet transform to evalu- ate the role of solar forcing on NE Pacific climate. Significant common power of periodicities between c. 42– 60, 70–89, 241–243, and of 380 yrs occur, suggesting that celestial forcing impacted late Holocene climate at Frederick Sound. Replication of the c. 241–243 yr periodicity in sunspot time series is most pronounced be- tween c. 2900 cal. yr BP and c. 2000 cal. yr BP, broadly correlative to the timing of maximum preservation of laminated sedimentary successions and diatom assemblage changes. High solar activity at the Suess/de Vries band may have been manifested as a prolonged westward shift and/or weakening of the Aleutian Low in the mid-late Holocene, which would have diverted fewer North Pacific storms and resulted in the relatively dry conditions reconstructed for the Seymour-Belize Inlet Complex.
Resumo:
A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms, chironomids and selected geochemical parameters were analysed and the sediment record was dated with radiocarbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosystem to catchment maturity and multiple stressors, such as climate change and volcanic eruptions. Climate change is the major driving force resulting in the recorded environmental changes in the lake, although recurrent tephra deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominating the vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong seasonal wind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreased primary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical proxies a dry and slightly warmer climate resulting in a high productive lake. The most remarkably change in the catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine (Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. This vegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which are also indicative of colder climate and more extensive ice-cover.