13 resultados para certificate-based signatures

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND:

We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq.

RESULTS:

13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03).

CONCLUSION:

Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To examine the potential biases arising from the nonlinkage of census records and vital events in longitudinal studies.
Study Design and Setting: A total of 56,396 deaths of residents of Northern Ireland in the 4 years after the 2001 Census were linked to the 2001 Census records. The characteristics of matched and nonmatched death records were compared using multivariate logistic regression. Subject attributes were as recorded on the death certificate.
Results: In total, 3,392 (6.0%) deaths could not be linked to a census record. Linkage rates were lowest in young adults, males, the unmarried, people living in communal establishments, or living in areas that were more deprived or had recorded low census enumeration. For those aged less than 65 years at census, this linkage would exclude from analysis 20.2% of suicides and 19.7% of deaths by external causes.
Conclusion: The nonlinkage of census and death records is a combination of nonenumeration at census and deficient information about the deceased recorded at the time of death. Unmatched individuals may have been more disadvantaged or socially isolated, and analysis based on the linked data set may therefore show some bias and perhaps understate true social gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
Connectivity mapping is a process to recognize novel pharmacological and toxicological properties in small molecules by comparing their gene expression signatures with others in a database. A simple and robust method for connectivity mapping with increased specificity and sensitivity was recently developed, and its utility demonstrated using experimentally derived gene signatures.

Results
This paper introduces sscMap (statistically significant connections' map), a Java application designed to undertake connectivity mapping tasks using the recently published method. The software is bundled with a default collection of reference gene-expression profiles based on the publicly available dataset from the Broad Institute Connectivity Map 02, which includes data from over 7000 Affymetrix microarrays, for over 1000 small-molecule compounds, and 6100 treatment instances in 5 human cell lines. In addition, the application allows users to add their custom collections of reference profiles and is applicable to a wide range of other 'omics technologies.

Conclusion
The utility of sscMap is two fold. First, it serves to make statistically significant connections between a user-supplied gene signature and the 6100 core reference profiles based on the Broad Institute expanded dataset. Second, it allows users to apply the same improved method to custom-built reference profiles which can be added to the database for future referencing. The software can be freely downloaded from http://purl.oclc.org/NET/sscMap

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connectivity mapping is the process of establishing connections between different biological states using gene-expression profiles or signatures. There are a number of applications but in toxicology the most pertinent is for understanding mechanisms of toxicity. In its essence the process involves comparing a query gene signature generated as a result of exposure of a biological system to a chemical to those in a database that have been previously derived. In the ideal situation the query gene-expression signature is characteristic of the event and will be matched to similar events in the database. Key criteria are therefore the means of choosing the signature to be matched and the means by which the match is made. In this article we explore these concepts with examples applicable to toxicology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategies available to evaluate the performance of in situ permeable reactive barriers are currently not well developed and often rely on fluid and media sampling directly from the permeable reactive barrier (PRB). Here, we investigate the utility of the self-potential (SP) method as a technique to monitor in situ PRB performance. Our field study was conducted at in situ biological PRB in Portadown, Northern Ireland, UK, which was emplaced to assist in the remediation of groundwater contamination (e.g., hydrocarbons, ammonia) that resulted from the operations and waste disposal practices of a former gasworks. Borehole SP measurements were collected during the injection of contaminant groundwater slugs in an attempt to monitor/detect the response of the microbial activity associated with the breakdown of the added contaminants into the PRB. In addition, an uncontaminated groundwater slug was injected into a different portion of the PRB as a ‘control’ and SP measurements were collected for comparison to the SP response of the contaminant slugs. The results of the SP signals due to the contaminant injections show that the magnitude of the response was relatively small (<10 mV) yet showed a consistent decrease during both contaminant injections. The net decrease in SP recorded during the contaminant injections slowly rebounded to near background values through ~44 hours post-injection. The SP response during the uncontaminated injection showed a slight, albeit negligible (within the margin of error), 1 mV increase in the measured SP signals, in contrast to the contaminant injections. The results of the SP signals recorded from the uncontaminated groundwater injection also persisted through a period of ~47 hours after injection but show a net increase in SP relative to pre-injection values. Based on the difference in SP response between the contaminated and uncontaminated injections, we suggest that the responses are likely to be the result of differences in the chemistry of the injection types (contaminated versus uncontaminated) and in situ groundwater. We argue that the SP signals associated with the contaminated injections are dominated by diffusion (electrochemical) potential, possibly enhanced by a microbial effect. While the results of our investigation show a consistent SP response associated with the contaminant injections that is dominated by diffusional effects, further studies are required in order to better understand the effect of microbial activity on SP signals and the potential utility for the SP method to detect/monitor changes that may be indicative of biological PRB performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis of myelodysplastic syndrome (MDS) currently relies primarily on the morphologic assessment of the patient's bone marrow and peripheral blood cells. Moreover, prognostic scoring systems rely on observer-dependent assessments of blast percentage and dysplasia. Gene expression profiling could enhance current diagnostic and prognostic systems by providing a set of standardized, objective gene signatures. Within the Microarray Innovations in LEukemia study, a diagnostic classification model was investigated to distinguish the distinct subclasses of pediatric and adult leukemia, as well as MDS. Overall, the accuracy of the diagnostic classification model for subtyping leukemia was approximately 93%, but this was not reflected for the MDS samples giving only approximately 50% accuracy. Discordant samples of MDS were classified either into acute myeloid leukemia (AML) or

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that highly tunable plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments. We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital signatures are an important primitive for building secure systems and are used in most real-world security protocols. However, almost all popular signature schemes are either based on the factoring assumption (RSA) or the hardness of the discrete logarithm problem (DSA/ECDSA). In the case of classical cryptanalytic advances or progress on the development of quantum computers, the hardness of these closely related problems might be seriously weakened. A potential alternative approach is the construction of signature schemes based on the hardness of certain lattice problems that are assumed to be intractable by quantum computers. Due to significant research advancements in recent years, lattice-based schemes have now become practical and appear to be a very viable alternative to number-theoretic cryptography. In this article, we focus on recent developments and the current state of the art in lattice-based digital signatures and provide a comprehensive survey discussing signature schemes with respect to practicality. Additionally, we discuss future research areas that are essential for the continued development of lattice-based cryptography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges in systems biology is to understand the complex responses of a biological system to external perturbations or internal signalling depending on its biological conditions. Genome-wide transcriptomic profiling of cellular systems under various chemical perturbations allows the manifestation of certain features of the chemicals through their transcriptomic expression profiles. The insights obtained may help to establish the connections between human diseases, associated genes and therapeutic drugs. The main objective of this study was to systematically analyse cellular gene expression data under various drug treatments to elucidate drug-feature specific transcriptomic signatures. We first extracted drug-related information (drug features) from the collected textual description of DrugBank entries using text-mining techniques. A novel statistical method employing orthogonal least square learning was proposed to obtain drug-feature-specific signatures by integrating gene expression with DrugBank data. To obtain robust signatures from noisy input datasets, a stringent ensemble approach was applied with the combination of three techniques: resampling, leave-one-out cross validation, and aggregation. The validation experiments showed that the proposed method has the capacity of extracting biologically meaningful drug-feature-specific gene expression signatures. It was also shown that most of signature genes are connected with common hub genes by regulatory network analysis. The common hub genes were further shown to be related to general drug metabolism by Gene Ontology analysis. Each set of genes has relatively few interactions with other sets, indicating the modular nature of each signature and its drug-feature-specificity. Based on Gene Ontology analysis, we also found that each set of drug feature (DF)-specific genes were indeed enriched in biological processes related to the drug feature. The results of these experiments demonstrated the pot- ntial of the method for predicting certain features of new drugs using their transcriptomic profiles, providing a useful methodological framework and a valuable resource for drug development and characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Differentiation of heart failure with reduced (HFrEF) or preserved (HFpEF) ejection fraction independent of echocardiography is challenging in the community. Diagnostic strategies based on monitoring circulating microRNA (miRNA) levels may prove to be of clinical value in the near future. The aim of this study was to identify a novel miRNA signature that could be a useful HF diagnostic tool and provide valuable clinical information on whether a patient has HFrEF or HFpEF.

METHODS AND RESULTS: MiRNA biomarker discovery was carried out on three patient cohorts, no heart failure (no-HF), HFrEF, and HFpEF, using Taqman miRNA arrays. The top five miRNA candidates were selected based on differential expression in HFpEF and HFrEF (miR-30c, -146a, -221, -328, and -375), and their expression levels were also different between HF and no-HF. These selected miRNAs were further verified and validated in an independent cohort consisting of 225 patients. The discriminative value of BNP as a HF diagnostic could be improved by use in combination with any of the miRNA candidates alone or in a panel. Combinations of two or more miRNA candidates with BNP had the ability to improve significantly predictive models to distinguish HFpEF from HFrEF compared with using BNP alone (area under the receiver operating characteristic curve >0.82).

CONCLUSION: This study has shown for the first time that various miRNA combinations are useful biomarkers for HF, and also in the differentiation of HFpEF from HFrEF. The utility of these biomarker combinations can be altered by inclusion of natriuretic peptide. MiRNA biomarkers may support diagnostic strategies in subpopulations of patients with HF.