2 resultados para causal modeling

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is primarily concerned with the modelling of aircraft manufacturing cost. The aim is to establish an integrated life cycle balanced design process through a systems engineering approach to interdisciplinary analysis and control. The cost modelling is achieved using the genetic causal approach that enforces product family categorisation and the subsequent generation of causal relationships between deterministic cost components and their design source. This utilises causal parametric cost drivers and the definition of the physical architecture from the Work Breakdown Structure (WBS) to identify product families. The paper presents applications to the overall aircraft design with a particular focus on the fuselage as a subsystem of the aircraft, including fuselage panels and localised detail, as well as engine nacelles. The higher level application to aircraft requirements and functional analysis is investigated and verified relative to life cycle design issues for the relationship between acquisition cost and Direct Operational Cost (DOC), for a range of both metal and composite subsystems. Maintenance is considered in some detail as an important contributor to DOC and life cycle cost. The lower level application to aircraft physical architecture is investigated and verified for the WBS of an engine nacelle, including a sequential build stage investigation of the materials, fabrication and assembly costs. The studies are then extended by investigating the acquisition cost of aircraft fuselages, including the recurring unit cost and the non-recurring design cost of the airframe sub-system. The systems costing methodology is facilitated by the genetic causal cost modeling technique as the latter is highly generic, interdisciplinary, flexible, multilevel and recursive in nature, and can be applied at the various analysis levels required of systems engineering. Therefore, the main contribution of paper is a methodology for applying systems engineering costing, supported by the genetic causal cost modeling approach, whether at a requirements, functional or physical level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suppliers are increasingly involved in buyer firms’ interorganizational new product development (NPD) teams. Yet the transfer of knowledge within this context may be subject to varying degrees of causal ambiguity, potentially limiting the effect of supplier involvement on performance. We develop a theoretical model exploring the effect of supplier involvement practices on the level of causal ambiguity within interorganizational NPD teams, and the subsequent impact on competitor imitation, new product advantage, and project performance. Our model also serves as a test of the paradox that causal ambiguity both inhibits imitation by competitors, but also adversely affects organisational outcomes. Results from an empirical study of 119 R&D intensive manufacturing firms in the United Kingdom largely support these hypotheses. Results from structural equation modeling show that supplier involvement orientation and long-term commitment lower causal ambiguity within interorganizational NPD teams. In turn, this lower causal ambiguity generates a new product advantage and increases project performance for the buyer firm, but has no significant effect on competitor imitation. Instead, competitor imitation is delayed by the extent to which the firm develops a new product advantage within the market. These results shed light on the causal ambiguity paradox showing that lower causal ambiguity during interorganizational new product development increases both product and project performance, but without reducing barriers to imitation. Product development managers are encouraged to utilize supplier involvement practices to minimise ambiguity in the NPD project, and to target their supplier involvement efforts on solving causally ambiguous technological problems to sustain a competitive advantage.