15 resultados para catabolism

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The aim of the investigation was to use in vitro transposon mutagenesis to generate metronidazole resistance in the obligately anaerobic pathogenic bacterium Bacteroides thetaiotaomicron, and to identify the genes involved to enable investigation of potential mechanisms for the generation of metronidazole resistance.
Methods: The genes affected by the transposon insertion were identified by plasmid rescue and sequencing. Expression levels of the relevant genes were determined by semi-quantitative RNA hybridization and catabolic activity by lactate dehydrogenase/pyruvate oxidoreductase assays.
Results: A metronidazole-resistant mutant was isolated and the transposon insertion site was identified in an intergenic region between the rhaO and rhaR genes of the gene cluster involved in the uptake and catabolism of rhamnose. Metronidazole resistance was observed during growth in defined medium containing either rhamnose or glucose. The metronidazole-resistant mutant showed improved growth in the presence of rhamnose as compared with the wild-type parent. There was increased transcription of all genes of the rhamnose gene cluster in the presence of rhamnose and glucose, likely due to the transposon providing an additional promoter for the rhaR gene, encoding the positive transcriptional regulator of the rhamnose operon. The B. thetaiotaomicron metronidazole resistance phenotype was recreated by overexpressing the rhaR gene in the B. thetaiotaomicron wild-type parent. Both the metronidazole-resistant transposon mutant and RhaR overexpression strains displayed a phenotype of higher lactate dehydrogenase and lower pyruvate oxidoreductase activity in comparison with the parent strain during growth in rhamnose.
Conclusions: These data indicate that overexpression of the rhaR gene generates metronidazole resistance in B. thetaiotaomicron

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus cycling in the biosphere has traditionally been thought to involve almost exclusively transformations of the element in its pentavalent oxidation state. Recent evidence, however, suggests that a significant fraction of environmental phosphorus may exist in a more reduced form. Most abundant of these reduced phosphorus compounds are the phosphonates, with their direct carbon–phosphorus bonds, and striking progress has recently been made in elucidating the biochemistry of microbial phosphonate transformations. These advances are now presented in the context of their contribution to our understanding of phosphorus biogeochemistry and of such diverse fields as the productivity of the oceans, marine methanogenesis and the discovery of novel microbial antimetabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the bacterial population of soil surface samples from a creosote-contaminated site showed that up to 50% of the culturable micro-organisms detected were able to utilise a mixture of cresols. From fifty different microbial isolates fourteen that could utilise more than one cresol isomer were selected and identified by 16S rRNA analysis. Eight isolates were Rhodococcus strains and six were Pseudomonas strains. In general, the Rhodococcus strains exhibited a broader growth substrate range than the Pseudomonas strains. The distribution of various extradiol dioxygenase (edo) genes, previously associated with aromatic compound degradation in rhodococci, was determined for the Rhodococcus strains by PCR detection and Southern-blot hybridization. One strain, Rhodococcus sp. I1 exhibited the broadest growth substrate range and possessed five different edo genes. Gene disruption experiments indicated that two genes (edoC and edoD) were associated with isopropylbenzene and naphthalene catabolism respectively. The other Rhodococcus strains also possessed some of the edo genes and one (edoB) was present in all of the Rhodococcus strains analysed. None of the rhodococcal edo genes analysed were present in the Pseudomonas strains isolated from the site. It was concluded that individual strains of Rhodococcus possess a wide degradative ability and may be very important in the degradation of complex mixtures of substrates found in creosote.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas putida KT2440 is the only fully sequenced P. putida strain. Thus, for transcriptomics and proteomics studies with other P. putida strains, the P. putida KT2440 genomic database serves as standard reference. The utility of KT2440 whole-genome, high-density oligonucleotide microarrays for transcriptomics studies of other Pseudomonas strains was investigated. To this end, microarray hybridizations were performed with genomic DNAs of subcultures of P. putida KT2440 (DSM6125), the type strain (DSM291(T)), plasmid pWW0-containing KT2440-derivative strain mt-2 (DSM3931), the solvent-tolerant P. putida S12, and several other Pseudomonas strains. Depending on the strain tested, 22 to 99% of all genetic elements were identified in the genomic DNAs. The efficacy of these microarrays to study cellular function was determined for all strains included in the study. The vast majority of DSM6125 genes encoding proteins of primary metabolism and genes involved in the catabolism of aromatic compounds were identified in the genomic DNA of strain S12: a prerequisite for reliable transcriptomics analyses. The genomotypic comparisons between Pseudomonas strains were used to construct highly discriminative phylogenetic relationships. DSM6125 and DSM3931 were indistinguishable and clustered together with strain S12 in a separate group, distinct from DSM291(T). Pseudomonas monteilii (DSM14164) clustered well with P. putida strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterium Rhodococcus rhodochrous NCIMB 13064, isolated from an industrial site, could use a wide range of 1-haloalkanes as sole carbon source but apparently utilized several different mechanisms simultaneously for assimilation of substrate. Catabolism of 1-chlorobutane occurred mainly by attack at the C-1 atom by a hydrolytic dehalogenase with the formation of butanol which was metabolized via butyric acid. The detection of small amounts of gamma-butyrolactone in the medium suggested that some oxygenase attack at C-4 also occurred, leading to the formation of 4-chlorobutyric acid which subsequently lactonized chemically to gamma-butyrolactone. Although 1-chlorobutane-grown cells exhibited little dehalogenase activity on 1-chloroalkanes with chain lengths above C-10, the organism utilized such compounds as growth substrates with the release of chloride. Concomitantly, gamma-butyrolactone accumulated to 1 mM in the culture medium with 1-chlorohexadecane as substrate. Traces of 4-hydroxybutyric acid were also detected. It is suggested that attack on the long-chain chloroalkane is initiated by an oxygenase at the non-halogenated end of the molecule leading to the formation of an omega-chlorofatty acid. This is degraded by beta-oxidation to 4-chlorobutyric acid which is chemically lactonized to gamma-butyrolactone which is only slowly further catabolized via 4-hydroxybutyric acid and succinic acid. However, release of chloride into the medium during growth on long-chain chloroalkanes was insufficient to account for all the halogen present in the substrate. Analysis of the fatty acid composition of 1-chlorohexadecane-grown cells indicated that chlorofatty acids comprised 75% of the total fatty acid content with C-14:0, C-16:0, C-16:1, and C-18:1 acids predominating. Thus the incorporation of 16-chlorohexadecanoic acid, the product of oxygenase attack directly into cellular lipid represents a third route of chloroalkane assimilation. This pathway accounts at least in part for the incomplete mineralization of long-chain chloroalkane substrates. This is the first report of the coexistence of a dehalogenase and the ability to incorporate long-chain haloalkanes into the lipid fraction within a single organism and raises important questions regarding the biological treatment of haloalkane containing effluents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD(+) cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The host genotype has been proposed to contribute to individually composed bacterial communities in the gut. To provide deeper insight into interactions between gut bacteria and host, we associated germ-free C3H and C57BL/10 mice with intestinal bacteria from a C57BL/10 donor mouse. Analysis of microbiota similarity between the animals with denaturing gradient gel electrophoresis revealed the development of a mouse strain-specific microbiota. Microarray-based gene expression analysis in the colonic mucosa identified 202 genes whose expression differed significantly by a factor of more than 2. Application of bioinformatics tools demonstrated that functional terms including signaling/secretion, lipid degradation/catabolism, guanine nucleotide/guanylate binding and immune response were significantly enriched in differentially expressed genes. We had a closer look at the 56 genes with expression differences of more than 4 and observed a higher expression in C57BL/10 mice of the genes coding for Tlr1 and Ang4 which are involved in the recognition and response to gut bacteria. A higher expression of Pla2g2a was detected in C3H mice. In addition, a number of interferon-inducible genes were higher expressed in C3H than in C57BL/10 mice including Gbp1, Mal, Oasl2, Ifi202b, Rtp4, Ly6g6c, Ifi27l2a, Usp18, Ifit1, Ifi44, and Ly6g indicating that interferons may play an essential role in microbiota regulation. However, genes coding for interferons, their receptors, factors involved in interferon expression regulation or signaling pathways were not differentially expressed between the two mouse strains. Taken together, our study confirms that the host genotype is involved in the establishment of host-specific bacterial communities in the gut. Based on expression differences after colonization with the same bacterial inoculum, we propose that Pla2g2a and interferon-dependent genes may contribute to this phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Maillard or browning reaction between reducing sugars and protein contributes to the chemical deterioration and loss of nutritional value of proteins during food processing and storage. This article presents and discusses evidence that the Maillard reaction is also involved in the chemical aging of long-lived proteins in human tissues. While the concentration of the Amadori adduct of glucose to lens protein and skin collagen is relatively constant with age, products of sequential glycation and oxidation of protein, termed glycoxidation products, accumulate in these long-lived proteins with advancing age and at an accelerated rate in diabetes. Among these products are the chemically modified amino acids, N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxymethyl)hydroxylysine (CMhL), and the fluorescent crosslink, pentosidine. While these glycoxidation products are present at only trace levels in tissue proteins, there is strong evidence for the presence of other browning products which remain to be characterized. Mechanisms for detoxifying reactive intermediates in the Maillard reaction and catabolism of extensively browned proteins are also discussed, along with recent approaches for therapeutic modulation of advanced stages of the Maillard reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactokinase, a member of the GHMP (galactokinase, homoserine kinase, mevalonate kinase, phosphomevalonate kinase) family of kinases, catalyses the ATP-dependent phosphorylation of galactose at position 1 on the sugar. This reaction is important in the Leloir pathway of galactose catabolism. The need to produce monosaccharides phosphorylated at position 1 for the synthesis of complex molecules, including aminoglycoside antibiotics, has stimulated interest in exploiting the catalytic potential of galactokinases. However, the enzyme is quite specific, generally only catalysing the phosphorylation of D-galactose and closely related molecules. Directed evolution strategies have identified a key tyrosine residue (Tyr-371 in the Escherichia coli enzyme) which, although distant from the active site, influences the specificity of the enzyme. Alteration of this residue to histidine in E. coli and Lactococcus lactis galactokinases dramatically expanded the substrate range to include both D- and L-sugars. Similar experiments with the human enzyme demonstrated that alteration of the equivalent tyrosine (Tyr-379) to cysteine, lysine, arginine, serine or tryptophan increased the catalytic promiscuity of the enzyme. It has been hypothesised that these specificity changes arise because of alterations in the flexibility of the polypeptide chain. This hypothesis has yet to be tested experimentally. The biotechnological potential of galactokinases is clearly considerable and exploitation of closely related enzymes such as N-acetylgalactosamine kinase and arabinose kinase would expand that potential still further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactosemia, an inborn error of galactose metabolism, was first described in the 1900s by von Ruess. The subsequent 100years has seen considerable progress in understanding the underlying genetics and biochemistry of this condition. Initial studies concentrated on increasing the understanding of the clinical manifestations of the disease. However, Leloir's discovery of the pathway of galactose catabolism in the 1940s and 1950s enabled other scientists, notably Kalckar, to link the disease to a specific enzymatic step in the pathway. Kalckar's work established that defects in galactose 1-phosphate uridylyltransferase (GALT) were responsible for the majority of cases of galactosemia. However, over the next three decades it became clear that there were two other forms of galactosemia: type II resulting from deficiencies in galactokinase (GALK1) and type III where the affected enzyme is UDP-galactose 4'-epimerase (GALE). From the 1970s, molecular biology approaches were applied to galactosemia. The chromosomal locations and DNA sequences of the three genes were determined. These studies enabled modern biochemical studies. Structures of the proteins have been determined and biochemical studies have shown that enzymatic impairment often results from misfolding and consequent protein instability. Cellular and model organism studies have demonstrated that reduced GALT or GALE activity results in increased oxidative stress. Thus, after a century of progress, it is possible to conceive of improved therapies including drugs to manipulate the pathway to reduce potentially toxic intermediates, antioxidants to reduce the oxidative stress of cells or use of "pharmacological chaperones" to stabilise the affected proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Lapatinib plus capecitabine emerged as an efficacious therapy in metastatic breast cancer (mBC). We aimed to identify germline single-nucleotide polymorphisms (SNPs) in genes involved in capecitabine catabolism and human epidermal receptor signaling that were associated with clinical outcome to assist in selecting patients likely to benefit from this combination.

PATIENTS AND METHODS: DNA was extracted from 240 of 399 patients enrolled in EGF100151 clinical trial (NCT00078572; clinicaltrials.gov) and SNPs were successfully evaluated in 234 patients. The associations between SNPs and clinical outcome were analyzed using Fisher's exact test, Kaplan-Meier curves, log-rank tests, likelihood ratio test within logistic or Cox regression model, as appropriate.

RESULTS: There were significant interactions between CCND1 A870G and clinical outcome. Patients carrying the A-allele were more likely to benefit from lapatinib plus capecitabine versus capecitabine when compared with patients harboring G/G (P = 0.022, 0.024 and 0.04, respectively). In patients with the A-allele, the response rate (RR) was significantly higher with lapatinib plus capecitabine (35%) compared with capecitabine (11%; P = 0.001) but not between treatments in patients with G/G (RR = 24% and 32%, respectively; P = 0.85). Time to tumor progression (TTP) was longer in patients with the A-allele treated with lapatinib plus capecitabine compared with capecitabine (median TTP = 7.9 and 3.4 months; P < 0.001), but not in patients with G/G (median TTP = 6.1 and 6.6 months; P = 0.92).

CONCLUSION: Our findings suggest that CCND1A870G may be useful in predicting clinical outcome in HER2-positive mBC patients treated with lapatinib plus capecitabine.