128 resultados para casting aluminium alloys molybdenum heat treatment mechanical properties microstructure high temperature exposition

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between microstructure and deformation and damage behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy has been studied using several experimental techniques, including optical microscopy, scanning electron microscopy and microhardness measurements. It was found that the deformation behaviour during dynamic compression was closely related to deformation parameters. After dynamic deformation, the deformation shear band that formed in the titanium alloy had microhardness similar to that of the matrix. However, the microhardness of the white shear band was much higher than the matrix microhardness. The effects of deformation parameters, including deformation rate and deformation degree, on deformation localisation were investigated. Based on the results from the present work, the microstructure and deformation processing parameters can be optimised. In addition, treatment methods after dynamic compression were explored to restore alloy properties. Using post-deformation heat treatment, the microstructure and property inhomogeneity caused by shear bands could be largely removed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the environmentally induced cracking behaviour of the NiTi weldment with and without post-weld heat-treatment (PWHT) in Hanks’ solution at 37.5 °C at OCP were studied by tensile and cyclic slow-strain-rate tests (SSRT), and compared with those tested in oil (an inert environment). Our previous results in the tensile and cyclic SSRT showed that the weldment without PWHT showed high susceptibility to the hydrogen cracking, as evidenced by the degradation of tensile and super-elastic properties when testing in Hanks' solution. The weldment after PWHT was much less susceptible to hydrogen attack in Hanks' solution as no obvious degradation in the tensile and super-elastic properties was observed, and only a very small amount of micro-cracks were found in the fracture surface. The susceptibility to hydrogen cracking of the NiTi weldment could be alleviated by applying PWHT at the optimized temperature of 350 °C after laser welding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Fe-8.46%Mn-0.24%Nb-0.038%C (wt.%) manganese steel was investigated. The steel has a 100% bcc structure after heat treatment at 850°C for 1.5 h, water quenching or air cooling. Martensite interlocked microstructure consisting of fine martensite plates/needles with different spatial orientations was found. Austenite forms, in small amounts, after a 600°C reheating treatment. Scanning electron microscopy images and energy dispersive spectrometry of the fracture surfaces revealed both ductile and brittle types of failure and precipitates. Deep quenching after the heat treatments does not change the phase composition or the hardness. NbC is formed in the steel, in high number densities. It plays a role in the impact fracture process, by acting as void nucleation sites, facilitating ductile fracture with dimples appearing on the fracture surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maraging steel with a composition of Fe–12·94Ni–1·61Al–1·01Mo–0·23Nb (wt-%) was investigated. Optical, scanning electron and transmission electron microscopy and X-ray diffraction analysis were employed to study the microstructure of the steel after different aging periods at temperatures of 450–600°C. Hardness and Charpy impact toughness of the steel were measured. The study of microstructure and mechanical properties showed that nanosized precipitates were formed homogeneously during the aging process, which resulted in high hardness. As the aging time is prolonged, precipitates grow and hardness increases. Fractography of the as forged steel has shown mixed ductile and brittle fracture and has indicated that the steel has good toughness. Relationships among heat treatment, microstructure and mechanical properties are discussed. Further experiments using tensile testing and impact testing for aged steel were carried out.