3 resultados para carbone

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital anomalies (CA) are the paradigm example of rare diseases liable to primary prevention actions due to the multifactorial etiology of many of them, involving a number of environmental factors together with genetic predispositions. Yet despite the preventive potential, lack of attention to an integrated preventive strategy has led to the prevalence of CA remaining relatively stable in recent decades. The 2 European projects, EUROCAT and EUROPLAN, have joined efforts to provide the first science-based and comprehensive set of recommendations for the primary prevention of CA in the European Union. The resulting EUROCAT-EUROPLAN 'Recommendations on Policies to Be Considered for the Primary Prevention of Congenital Anomalies in National Plans and Strategies on Rare Diseases' were issued in 2012 and endorsed by EUCERD (European Union Committee of Experts on Rare Diseases) in 2013. The recommendations exploit interdisciplinary expertise encompassing drugs, diet, lifestyles, maternal health status, and the environment. The recommendations include evidence-based actions aimed at reducing risk factors and at increasing protective factors and behaviors at both individual and population level. Moreover, consideration is given to topics specifically related to CA (e.g. folate status, teratogens) as well as of broad public health impact (e.g. obesity, smoking) which call for specific attention to their relevance in the pre- and periconceptional period. The recommendations, reported entirely in this paper, are a comprehensive tool to implement primary prevention into national policies on rare diseases in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.