42 resultados para carbon nanotube (CNT) dispersion

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (methyl methacrylate) (PMMA) bone cement—multi walled carbon nanotube (MWCNT) nanocomposites with weight loadings ranging from 0.1 to 1.0 wt% were prepared. The MWCNTs investigated were unfunctionalised, carboxyl and amine functionalised MWCNTs. Mechanical properties of the resultant nanocomposite cements were characterised as per international standards for acrylic resin cements. These mechanical properties were influenced by the type and wt% loading of MWCNT used. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect and hindering crack propagation. MWCNTs agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the weight fraction and functionality of MWCNTs incorporated into the cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel approach for introducing aligned carbon nanotubes (CNTs) at the crack interface of pre-impregnated (prepreg) carbon fibre composite plies, creating a hierarchical (three-phase) composite structure. The aim of this approach is to improve the interlaminar fracture toughness. The developed method for transplanting the aligned CNTs from the silicon wafer onto the pre-preg material is described. Scanning electron microscopy (SEM) was used to analyse the effects of the transplantation method. Double Cantilever Beam (DCB) specimens were prepared, according to ASTM standard D5528- 01R07E03 [1] and aligned multi-walled carbon nanotubes (MWCNTs) were introduced at the crack-tip. Mode I fracture tests for pristine (control) specimens and CNT-enhanced specimens were conducted and an average increase in the critical strain energy release rate (GIc) of approximately 50 % was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes can be grown as forests of aligned fibers on a substrate with a catalyst coated prior to or added during synthesis. A major process interruption can initiate the growth of second and successive layers of forest on top or at the base of the existing layers which are thereby lifted up. We report on the generation of multilayer CNT forests where the first forest is generated either by catalyst coinjection (CCI) of ferrocene with hydrocarbon (xylene) or by catalyst predeposition (CPD) of iron followed with hydrocarbon (acetylene). Subsequent layers are then produced by CCI alone to give uniform (all CCI) or mixed (CPD and CCI) structures to study the distribution of the iron catalyst and CNT morphology and to determine whether the CPD forest templates or otherwise influences the growth of subsequent CCI forests. The bottom-up base growth of second and subsequent CCI forests is reaction rate controlled. CCI multilayer forests accumulate catalyst (iron) in a variety of distinct locations. A pre-existing CPD forest modifies subsequent CCI forest initiation, morphology, and catalyst distribution but does not itself accumulate catalyst or change appearance. © 2009 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method combining electrospinning of SPEEK and direct spinning of CNT forests has been used to prepare sulfonated poly(ether ether ketone) (SPEEK)/directly spinnable carbon nanotube (dsCNT) composite proton exchange membranes. The SPEEK/dsCNT membrane is more robust than SPEEK alone, and in a fuel cell significantly outperforms both SPEEK and the commercial Nafion 212 membranes.